

Integer Programming

Lecture 1

LU Lan

lluae@ustc.edu.cn

What is mathematical optimization?

Mathematical Optimization

- *Mathematical optimization* is a formal language for describing and analyzing (optimization) problems.
- The essential elements of an optimization problem are
 - a system whose operating state can be specified numerically by specifying the values of certain *variables*;
 - a set of states considered *feasible* for the given system that are contained in a set we can describe; and
 - an *objective function* that defines a preference ordering of the states.
- Before applying mathematical optimization techniques, we must first create a *model*, which is then translated into a particular *formulation*.
- The formulation is a formal description of the problem in terms of mathematical functions and logical operators.
- The use of mathematical optimization as a language imposes constraints on how the system can be modeled.
- We often need to make simplifying assumptions and approximations in order to put the problem into the required form.
- Nevertheless, mathematical optimization is a *very general language*.

Modeling

- Our overall goal is to develop a *model* of a real-world system in order to analyze the system.
- The system we are modeling is typically (but not always) one we are seeking to control by determining its “operating state.”
- The (independent) variables in our model represent aspects of the system we have control over.
- The values that these variables take in the model tell us how to set the operating state of the system in the real world.
- *Modeling* is the process of creating a conceptual model of the real-world system.
- *Formulation* is the process of constructing a mathematical optimization problem whose solution reveals the optimal state according to the model.
- This is far from an exact science.

The Problem Solving Process

- The process solving the original problem consists generally of the following steps.
 - Model: Determine the “real-world” state variables, system constraints, and goal(s) or objective(s) for operating the system.
 - Formulate: Translate these variables and constraints into the form of a mathematical optimization problem (the “formulation”).
 - Solve: Solve the mathematical optimization problem.
 - Interpret: Interpret the solution in terms of the real-world system.
- This process presents many challenges.
 - Simplifications may be required in order to ensure the eventual mathematical optimization problem is “tractable.”
 - The mappings from the real-world system to the model and back are sometimes not very obvious.
 - Variables that don’t appear in the conceptual model may be needed to enforce logical conditions or simplify the form of the constraints.
 - There may be more than one valid “formulation.”
- All in all, an intimate knowledge of mathematical optimization definitely helps during the modeling process.

Mathematical Optimization Problems

Elements of the model:

- Decision variables: a vector of variables indexed 1 to n .
- Constraints: pairs of functions and right-hand sides indexed 1 to m .
- Objective Function
- Parameters and Data

The general form of a *mathematical optimization problem* is:

$$\begin{aligned} z_{\text{MP}} &= \sup f(x) \\ \text{s.t.} \quad g_i(x) &\leq b_i, \quad 1 \leq i \leq m \\ x &\in \mathbb{Z}^p \times \mathbb{R}^{n-p} \end{aligned} \tag{MP}$$

Note the use supremum here because the maximum may not exist.

Feasible Region

- The *feasible region* of (MP) is

$$\mathcal{F} = \{x \in \mathbb{Z}^p \times \mathbb{R}^{n-p} \mid g_i(x) \leq b_i, \quad 1 \leq i \leq m\}$$

- The feasible region is *bounded* when

$$\mathcal{F} \subseteq \{x \in \mathbb{R}^m \mid \|x\|_1 \leq M\}$$

and *unbounded* otherwise.

- We take $z_{\text{MP}} = -\infty$ when $\mathcal{F} = \emptyset$ and say the problem is *infeasible* in this case.
- We may also have $z_{\text{MP}} = \infty$ when the problem is *unbounded*, e.g., f is a linear function and $\exists \hat{x} \in \mathcal{F}$ and $d \in \mathbb{R}^n$ such that
 - $x + \lambda d \in \mathcal{F}$ for all $\lambda \in \mathbb{R}_+$,
 - $f(d) > 0$.
- Note that there is a difference between the *feasible region* being unbounded and the *problem* being unbounded.

Solutions

- A *solution* is an assignment of values to variables.
- A solution can hence be thought of as an n -dimensional vector.
- A *feasible solution* is an assignment of values to variables such that all the constraints are satisfied, i.e., a member of \mathcal{F} .
- The *objective function value* of a solution is obtained by evaluating the objective function at the given point.
- An *optimal solution* (assuming maximization) is one whose objective function value is greater than or equal to that of all other feasible solutions.
- Note that a mathematical optimization problem may not have an optimal solution.
- Question: What are the different ways in which this can happen?

Possible Outcomes

- When we say we are going to “solve” a mathematical optimization problem, we mean to determine
 - whether it has an optimal *value* (meaning z_{MP} is finite), and
 - whether it has an optimal *solution* (the supremum can be attained).
- Note that the supremum may not be attainable if, e.g., \mathcal{F} is an open set.
- We may also want to know some other things, such as the status of its “dual” or about sensitivity.

Types of Mathematical Optimization Problems

- The type of a mathematical optimization problem is determined primarily by
 - The form of the objective and the constraints.
 - Whether there are integer variables or not.
- In [linear models](#):
 - The objective function is linear.
 - The constraints are linear.
- The most important determinants of whether a mathematical optimization problem is “tractable” are the convexity of
 - The objective function.
 - The feasible region.

Types of Mathematical Optimization Problems (cont'd)

- Mathematical optimization problems are generally classified according to the following dichotomies.
 - Linear/nonlinear
 - Convex/nonconvex
 - Discrete/continuous
 - Stochastic/deterministic
- This class concerns (primarily) models that are discrete, linear, and deterministic (and as a result generally non-convex)

The Formal Setting for This Course

- We consider linear optimization problems in which we additionally impose that $x \in \mathbb{Z}_+^p \times \mathbb{R}_+^{n-p}$.
- The general form of such a mathematical optimization problem is

$$z_{\text{IP}} = \max\{c^\top x \mid x \in \mathcal{S}\}, \quad (\text{MILP})$$

where for $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$. we have

$$\mathcal{P} = \{x \in \mathbb{R}^n \mid Ax \leq b\} \quad (\text{FEAS-LP})$$

$$\mathcal{S} = \mathcal{P} \cap (\mathbb{Z}_+^p \times \mathbb{R}_+^{n-p}) \quad (\text{FEAS-MIP})$$

- This type of optimization problem is called a *mixed integer linear optimization problem* (MILP).
- If $p = n$, then we have a *pure integer linear optimization problem*, or an *integer optimization problem* (IP).
- If $p = 0$, then we have a *linear optimization problem* (LP).
- The first p components of x are the *discrete* or *integer* variables and the remaining components consist of the *continuous* variables.

Conventions and Notation

If not otherwise stated, the following conventions will be followed for lecture slides during the course:

- A will denote a **matrix** of dimension m by n (rational).
- b will denote a **vector** of dimension m (rational).
- x will denote a **vector** of dimension n .
- c will denote a **vector** of dimension n (rational).
- p will be the number of integer variables.
- \mathcal{P} will denote a **polyhedron** contained in \mathbb{R}^n , usually given in the form

$$\mathcal{P} = \{x \in \mathbb{R}^n \mid Ax \leq b\}$$

- \mathcal{S} will be $\mathcal{P} \cap (\mathbb{Z}_+^p \times \mathbb{R}_+^{n-p})$.
- An integer program is then described fully by the quadruplet (A, b, c, p) .
- Vectors will be column vectors unless otherwise noted.
- When taking the product of vectors, we will sometimes leave off the transpose.

Additional Notation

- The notation A_N will denote a submatrix formed by taking the columns indexed by set $N \subseteq \{1, \dots, n\}$.
- We will sometimes use the notation $I = \{1, \dots, p\}$ and $C = \{p + 1, \dots, n\}$.
- Then A_C is a matrix formed by the columns of A corresponding to the continuous variables.
- Similarly, A_I is a matrix formed by the columns of A corresponding to the integer variables.
- The i^{th} column of A will be denoted A_i .
- The i^{th} row of A will be denoted a_i .

Special Case: Binary Integer Optimization

- In many cases, the variables of an IP represent yes/no decisions or logical relationships.
- These variables naturally take on values of 0 or 1.
- Such variables are called *binary*.
- IPs involving only binary variables are called *binary integer optimization problems* (BIPs) or 0 – 1 *integer optimization problems* (0 – 1 IPs).

Combinatorial Optimization

- A *combinatorial optimization problem* $CP = (N, \mathcal{F})$ consists of
 - A finite *ground set* N ,
 - A set $\mathcal{F} \subseteq 2^N$ of *feasible solutions*, and
 - A *cost function* $c \in \mathbb{Z}^n$.
- The *cost* of $F \in \mathcal{F}$ is $c(F) = \sum_{j \in F} c_j$.
- The combinatorial optimization problem is then

$$\max\{c(F) \mid F \in \mathcal{F}\}$$

- There is a natural association with a 0 – 1 IP.
- Many COPs can be written as BIPs or MILPs.

Some Notes

- The form of the problem we consider will be **maximization** by default, since this is the standard in the reference texts.
- Also note that the definition of \mathcal{S} includes non-negativity, but the definition of \mathcal{P} does not.
- One further assumption we will make is that the constraint matrix is **rational**. Why?

Some Notes

- The form of the problem we consider will be **maximization** by default, since this is the standard in the reference texts.
- Also note that the definition of \mathcal{S} includes non-negativity, but the definition of \mathcal{P} does not.
- One further assumption we will make is that the constraint matrix is **rational**. Why?
 - This is an important assumption since with irrational data, certain “intuitive” results no longer hold.
 - A computer can only understand rational data anyway, so this is not an unreasonable assumption.

How Difficult is MILP?

- Solving general integer MILPs can be much more difficult than solving LPs.
- There is no known *polynomial-time* algorithm for solving general MILPs.
- Solving the associated *LP relaxation*, an LP obtained by dropping the integrality restrictions, results in an upper bound on z_{IP} .
- Unfortunately, solving the *LP relaxation* may not tell us much.
 - **Rounding** to a feasible integer solution may be difficult.
 - The optimal solution to the LP relaxation can be arbitrarily far away from the optimal solution to the MILP.
 - Rounding may result in a solution far from optimal.

Discrete Optimization and Convexity

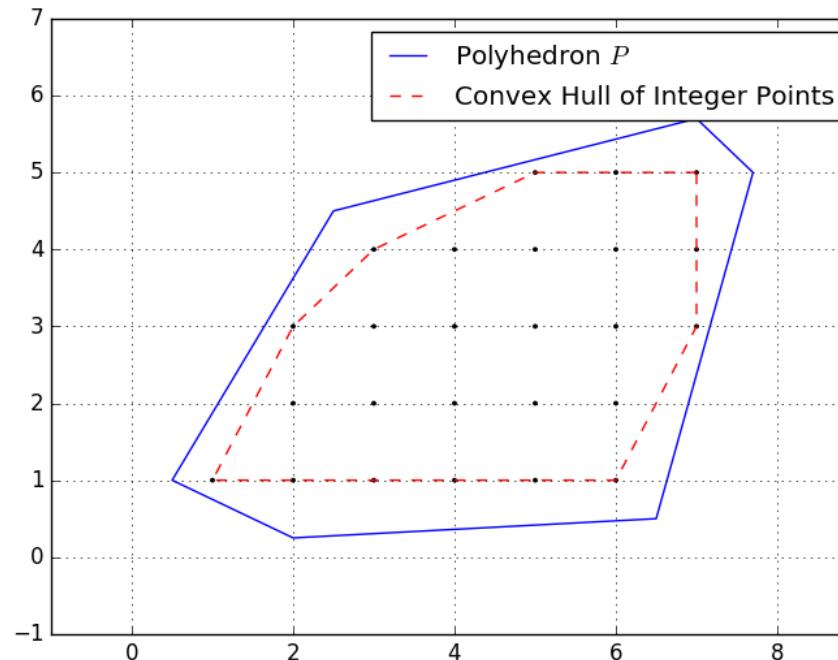
- One reason why convex problems are “easy” to solve is because convexity makes it easy to find *improving feasible directions*.
- Optimality criterion for a linear program are equivalent to “no improving feasible directions.”
- The feasible region of an MILP is nonconvex and this makes it difficult to find feasible directions.
- The algorithms we use for LP can’t easily be generalized.
- Although the feasible set is nonconvex, there is a convex set over which we can optimize in order to get a solution ([why?](#)).
- The challenge is that we do not know how to describe that set.
- Even if we knew the description, it would in general be too large to write down explicitly.
- Integer variables can be used to model other forms of nonconvexity, as we will see later on.

The Geometry of an MILP

- Let's consider again an integer optimization problem

$$\begin{aligned}
 \max \quad & c^\top x \\
 \text{s.t.} \quad & Ax \leq b \\
 & x \in \mathbb{Z}_+^n
 \end{aligned}$$

- The **feasible region** is the integer points inside a polyhedron.



- Why does solving the LP relaxation not necessarily yield a good solution?

Conjunction versus Disjunction

- A more general mathematical view that ties integer programming to logic is to think of integer variables as expressing *disjunction*.
- The constraints of a standard mathematical program are *conjunctive*.
 - **All** constraints must be satisfied.
 - In terms of logic, we have

$$g_1(x) \leq b_1 \text{ AND } g_2(x) \leq b_2 \text{ AND } \dots \text{ AND } g_m(x) \leq b_m \quad (1)$$

- This corresponds to *intersection* of the regions associated with each constraint.
- Integer variables introduce the possibility to model *disjunction*.
 - **At least one** constraint must be satisfied.
 - In terms of logic, we have

$$g_1(x) \leq b_1 \text{ OR } g_2(x) \leq b_2 \text{ OR } \dots \text{ OR } g_m(x) \leq b_m \quad (2)$$

- This corresponds to the *union* of the regions associated with each constraint.

MILP Representability

- The connection between integer programming and disjunction is captured most elegantly by the representability theorem.

Definition 1. A set $\mathcal{F} \subseteq \mathbb{R}^n$ is MILP representable if there exist $A \in \mathbb{Q}^{m \times n}$, $G \in \mathbb{Q}^{r \times n}$, $b \in \mathbb{Q}^m$ such that for

$$\mathcal{S} = \{(x, y) \in (\mathbb{Z}^p \times \mathbb{R}_+^{n-p}) \times (\mathbb{Z}_+^t \times \mathbb{R}_+^{r-t}) \mid Ax + Gy \leq b\},$$

we have that $\mathcal{F} = \text{proj}_x(\mathcal{S})$.

Theorem 1. (MILP Representability Theorem) A set $\mathcal{F} \subseteq \mathbb{R}^n$ is MILP representable if and only if there exist rational polytopes $\mathcal{P}_1, \dots, \mathcal{P}_k$ and vectors $r^1, \dots, r^t \in \mathbb{Z}^n$ such that

$$\mathcal{F} = \bigcup_{i=1}^k (\mathcal{P}_i + \text{intcone}\{r^1, \dots, r^t\})$$

- Roughly speaking, we are optimizing over a union of polyhedra all of which have the same recession cone.
- This class of problem can also be obtained simply by introducing a disjunctive logical operator to the language of linear programming.

Connection with Other Fields

- Integer programming can be studied from the point of view of a number of fundamental mathematical disciplines:
 - Algebra
 - (Projective) Geometry
 - Topology
 - Combinatorics
 - * Matroid theory
 - * Graph theory
 - Logic
 - * Set theory
 - * Formal systems and proof theory
 - * Computability/complexity theory
- There are also (many) other related disciplines:
 - Constraint programming
 - Answer set programming
 - Logic programming
 - Satisfiability
 - Planning and artificial intelligence

Basic Themes

Our goal will be to expose the geometrical structure of the feasible region (at least near the optimal solution). We can do this by

- Convexification
- Outer/Inner approximation
- Lifting and Projection

An important component of the algorithms we consider will be mechanisms for computing bounds by either

- Relaxation
- Duality

When all else fails, we will employ a basic principle: divide large, difficult problems into smaller ones.

- Logic (conjunction/disjunction)
- Implicit enumeration
- Decomposition