
Integer Programming

Lecture 10

 2

The Efficiency of Branch and Bound

• In general, our goal is to solve the problem at hand as quickly as possible.

• The overall solution time is the product of the number of nodes
enumerated and the time to process each node.

• Typically, by spending more time in processing, we can achieve a reduction
in tree size by computing stronger (closer to optimal) bounds.

• This highlights another of the many tradeoffs we must navigate.

• Our goal in bounding is to achieve a balance between the strength of the
bound and the efficiency with which we can compute it.

• How do we compute bounds?

– Relaxation: Relax some of the constraints and solve the resulting
mathematical optimization problem.

– Duality: Formulate a “dual” problem and find a feasible to it.

• In practice, we will use a combination of these two closely-related
approaches.

2

 3

Relaxation

As usual, we consider the MILP

zIP = max{c>x | x ∈ S}, (MILP)

where

P = {x ∈ Rn | Ax ≤ b} (FEAS-LP)

S = P ∩ (Zp+ × Rn−p+) (FEAS-MIP)

Definition 1. A relaxation of (MILP) is a maximization problem defined
as

zR = max{zR(x) | x ∈ SR}
with the following two properties:

S ⊆ SR
c>x ≤ zR(x), ∀x ∈ S.

3

 4

Importance of Relaxations

• The main purpose of a relaxation is to obtain an upper bound on zIP .

• Solving a relaxation is one simple method of bounding in branch and
bound.

• The idea is to choose a relaxation that is much easier to solve than the
original problem, but still yields a bound that is “strong enough.”

• Note that the relaxation must be solved to optimality to yield a valid
bound.

• We consider three types of “formulation-based” relaxations.

– LP relaxation
– Combinatorial relaxation
– Lagrangian relaxation

• Relaxations are also used in some other bounding schemes we’ll look at.

4

 5

Dual Functions from Relaxations

• Note that relaxations can be used to obtain dual functions!

• The value function of any relaxation is a solution to the general dual we
discussed in Lecture 8.

• In particular, recall that we have already seen that the value function of
the LP relaxation is the convex envelope of the exact value function.

5

 7

Obtaining and Using Relaxations

• Properties of relaxations

– If a relaxation of (MILP) is infeasible, then so is (MILP).
– If zR(x) = c>x, then for x∗ ∈ argmaxx∈SR zR(x), if x∗ ∈ S, then x∗

is optimal for (MILP).

• The easiest way to obtain relaxations of (MILP) is to relax some of the
constraints defining the feasible set S.

• It is “obvious” how to obtain an LP relaxation, but combinatorial
relaxations are not as obvious.

7

 8

Example: Traveling Salesman Problem

The TSP is a combinatorial problem (E,F) whose ground set is the edge
set of a graph G = (V,E).

• V = {1, . . . , n} is the set of customers.

• E is the set of travel links between the customers.

A feasible solution is a subset of E consisting of edges of the form {i, σ(i)}
for i ∈ V , where σ is a simple permutation V specifying the order in which
the customers are visited.

IP Formulation: ∑n
j=1 xij 2=∑
i∈S
j 6∈S

xij ≥ 2 ∀S ⊂ V, |S| > 1.

where xij is a binary variable indicating whether σ(i) = j.

8

∀i ∈ V

 9

Combinatorial Relaxations of the TSP

• The Traveling Salesman Problem has several well-known combinatorial
relaxations.

• Assignment Problem

– The problem of assigning n people to n different tasks.
– Can be solved in polynomial time.
– Obtained by dropping the subtour elimination constraints and the

upper bounds on the variables.

• Minimum 1-tree Problem

– A 1-tree in a graph is a spanning tree of nodes {2, . . . n} plus exactly
two edges incident to node one.

– A minimum 1-tree can be found in polynomial time.
– This relaxation is obtained by dropping all subtour elimination

constraints involving node 1 and also all degree constraints not
involving node 1.

9

 10

Exploiting Relaxations

• How can we use our ability to solve a relaxation to full advantage?

• The most obvious way is simply to straightforwardly use the relaxation
to obtain a bound.

• However, by solving the relaxation repeatedly, we can get additional
information.

• For example, we can generate extreme points of conv(SR).

• In an indirect way (using the Farkas Lemma), we can even obtain
facet-defining inequalities for conv(SR).

• We can use this information to strengthen the original formulation.

• This is one of the basic principles of many solution methods.

10

 11

Lagrangian Relaxation

• A Lagrangian relaxation is obtained by relaxing a set of constraints from
the original formulation to improve tractability.

• However, we also try to improve the bound by modifying the objective
function, penalizing violation of the dropped constraints.

• Consider a pure IP defined by

max c>x

s.t. A′x ≤ b′

A′′x ≤ b′′

x ∈ Zn+,

(IP)

where SR = {x ∈ Zn+ | A′x ≤ b′} bounded and optimization over SR is
“easy.”

• Lagrangian Relaxation:

LR(u) : zLR(u) = ub′′ + max
x∈SR

{(c− uA′′)x}.

11

 12

Properties of the Lagrangian Relaxation

• For any u ≥ 0, LR(u) is a relaxation of (IP) (why?).

• Solving LR(u) yields an upper bound on the value of an optimal solution.

• Recalling LP duality, one can think of u as a vector of “dual variables.”

• The Lagrangian dual problem is that of determining

min
u≥0

LR(u),

the “best bound” that can be obtained by optimization over SR.

• This bound is at least as good as the bound yielded by solving the LP
relaxation.

• We will examine this problem in much more detail later in the course.

12

 13

The Lagrangian Dual Function

• We can obtain a dual function from a Lagrangian relaxation by letting

L(β, u max) =
x∈SR(β′)

(c− uA′′)x+ uβ′′,

where SR(d) = {x ∈ Zn+ | A′x ≤ d}

• For fixed β, the function L(·, u) is the max of affine functions, i.e.,
convex piecewise polyhedral.

• Then the Lagrangian dual function, φLD, is

φLD(β) = min
u≥0

L(β, u)

• This is the minimum of convex piecewise polyhedral functions and bounds
the value function from above (we are in the maximization case here).

• We will see a number of ways of efficiently computing φLD(b) later in
the course.

13

 14

Relaxations from Conceptual Reformulations

• From what we have seen so far, we have two conceptual reformulations
of a given integer optimization problem.

• The first is in terms of disjunction:

max

{
c>x | x ∈

(
k⋃
i=1

Pi + intcone{r1, . . . , rt}

)}
(DIS)

• The second is in terms of valid inequalities:

max
{
c>x | x ∈ conv(S)

}
(CP)

where S is the feasible region.

• In principle, if we had a method for generating either of these
reformulations, this would lead to a practical method of solution.

• Instead, we usually begin with a relaxation derived from one of these two
reformulations and iteratively approximate the full formulation.

14

 15

A Generic Algorithmic Framework

• Many algorithms in optimization consist of the iterative solution of a
certain relaxation or “dual”.

• The relaxation or dual is improved dynamically until an optimality
criterion is achieved.

• A simple algorithm for solving MILPs is to start by solving the LP
relaxation to obtain

x̂ ∈ argmaxx∈P c
>x

and the upper bound U = c>x̂ ≥ zIP

• Then determine either a valid disjunction or a valid inequality that is
violated by x̂ and “add” it to the relaxation.

• Re-solve the strengthened relaxation and continue this process until
U = zIP (the solution to the relaxation is in S).

• This vague algorithm is, at a high level, how we solve MILPs and we will
see that branch-and-bound fits into this framework.

• The condition that U = zIP is the basic optimality condition used in a
wide range of optimization algorithms.

15

 16

The Branch and Bound Tree as a “Meta-Relaxation”

• The branch-and-bound tree itself encodes a relaxation of our original
problem, as we mentioned in the last lecture.

• As observed previously, the set T of leaf nodes of the tree (including
those that have been pruned) constitute a valid disjunction, as follows.

– When we branch using admissible disjunctions, we associate with each
t ∈ T a polyhedron Xt described by the imposed branching constraints.

– The collection {Xt}t∈T then defines a disjunction.

• The subproblem associated with node i is an integer program with
feasible region S ∩ P ∩Xt.

• The problem
max
t∈T

max
x∈P∩Xt

c>x (OPT)

is then a relaxation according to our definition.

• Branch and bound can be seen as a method of iteratively strengthening
this relaxation.

• We will later see how we can add valid inequalities to the constraint of
P ∩Xt to strengthen further.

16

