Integer Programming

Lecture 10

The Efficiency of Branch and Bound

In general, our goal is to solve the problem at hand as quickly as possible.

The overall solution time is the product of the number of nodes
enumerated and the time to process each node.

Typically, by spending more time in processing, we can achieve a reduction
in tree size by computing stronger (closer to optimal) bounds.

This highlights another of the many tradeoffs we must navigate.

Our goal in bounding is to achieve a balance between the strength of the
bound and the efficiency with which we can compute it.

How do we compute bounds?

— Relaxation: Relax some of the constraints and solve the resulting
mathematical optimization problem.
— Duality: Formulate a “dual” problem and find a feasible to it.

In practice, we will use a combination of these two closely-related
approaches.

Relaxation

As usual, we consider the MILP

zip =max{c z |z €S}, (MILP)
where
P={xeR"| Az < b} (FEAS-LP)
S=PnN(Z xR (FEAS-MIP)
Definition 1. A relaxation of (MILP) is a maximization problem defined
as

zr = max{zgr(x) | z € Sg}

with the following two properties:

S

cTaz

1M

Sr
zr(x), Vo € S.

IA

Importance of Relaxations

The main purpose of a relaxation is to obtain an upper bound on z;p.

Solving a relaxation is one simple method of bounding in branch and
bound.

The idea is to choose a relaxation that is much easier to solve than the
original problem, but still yields a bound that is “strong enough.”

Note that the relaxation must be solved to optimality to yield a valid
bound.

We consider three types of “formulation-based” relaxations.

— LP relaxation
— Combinatorial relaxation
— Lagrangian relaxation

Relaxations are also used in some other bounding schemes we'll look at.

Dual Functions from Relaxations

e Note that relaxations can be used to obtain dual functions!

e The value function of any relaxation is a solution to the general dual we
discussed in Lecture 8.

e |n particular, recall that we have already seen that the value function of
the LP relaxation is the convex envelope of the exact value function.

Obtaining and Using Relaxations

e Properties of relaxations

— If a relaxation of (MILP) is infeasible, then so is (MILP).
— If zg(x) = c¢'x, then for 2* € argmax, g, Zr(z), if z* € S, then z*
is optimal for (MILP).

e The easiest way to obtain relaxations of (MILP) is to relax some of the
constraints defining the feasible set S.

e It is “obvious’ how to obtain an LP relaxation, but combinatorial
relaxations are not as obvious.

Example: Traveling Salesman Problem

The TSP is a combinatorial problem (E,F) whose ground set is the edge
set of a graph G = (V, E).

e IV ={1,...,n} is the set of customers.

e [/ is the set of travel links between the customers.

A feasible solution is a subset of F consisting of edges of the form {i, ()}
for 1 € V, where o is a simple permutation V' specifying the order in which
the customers are visited.

IP Formulation:

E?:lajij = 2 YieV
Zj-;% ri; > 2 VSCV, S| >1

where x;; is a binary variable indicating whether (i) = J.

Combinatorial Relaxations of the TSP

e The Traveling Salesman Problem has several well-known combinatorial
relaxations.

e Assignment Problem

— The problem of assigning n people to n different tasks.

— Can be solved in polynomial time.

— Obtained by dropping the subtour elimination constraints and the
upper bounds on the variables.

e Minimum 1-tree Problem

— A I-treein a graph is a spanning tree of nodes {2, . . . n} plus exactly
two edges incident to node one.

— A minimum 1-tree can be found in polynomial time.

— This relaxation is obtained by dropping all subtour elimination
constraints involving node 1 and also all degree constraints not
involving node 1.

10

Exploiting Relaxations

How can we use our ability to solve a relaxation to full advantage?

The most obvious way is simply to straightforwardly use the relaxation
to obtain a bound.

However, by solving the relaxation repeatedly, we can get additional
information.

For example, we can generate extreme points of conv(Sg).

In an indirect way (using the Farkas Lemma), we can even obtain
facet-defining inequalities for conv(Sg).

We can use this information to strengthen the original formulation.

This is one of the basic principles of many solution methods.

11

Lagrangian Relaxation

e A Lagrangian relaxation is obtained by relaxing a set of constraints from
the original formulation to improve tractability.

e However, we also try to improve the bound by modifying the objective
function, penalizing violation of the dropped constraints.

e Consider a pure IP defined by

max CT.Q?

s.t. Alx <V
A//x < b//

r €L,

(IP)

where Sp = {z € Z"} | A’z < b’} bounded and optimization over S, is
lleasy.’l

e Lagrangian Relaxation:

LR(u) : zrr(u) = ub” + max{(c — uA”)x}.

rESR

12

Properties of the Lagrangian Relaxation

For any u > 0, LR(u) is a relaxation of (IP) (why?).
Solving LR(u) yields an upper bound on the value of an optimal solution.
Recalling LP duality, one can think of uw as a vector of “dual variables.”

The Lagrangian dual problem is that of determining

min LR(u),
u>0

the “best bound” that can be obtained by optimization over Sk.

This bound is at least as good as the bound yielded by solving the LP
relaxation.

We will examine this problem in much more detail later in the course.

13

The Lagrangian Dual Function

We can obtain a dual function from a Lagrangian relaxation by letting

L(B,u) = xergggcﬁ/)(c —uA"x +up”,

where Sp(d) ={z € Z" | A’z < d}

For fixed /3, the function L(-,u) is the max of affine functions, i.e.,
convex piecewise polyhedral.

Then the Lagrangian dual function, ¢ p, is

¢rp(B) = min L(5, u)

u>0

This is the minimum of convex piecewise polyhedral functions and bounds
the value function from above (we are in the maximization case here).

We will see a number of ways of efficiently computing ¢ p(b) later in
the course.

14

Relaxations from Conceptual Reformulations

From what we have seen so far, we have two conceptual reformulations
of a given integer optimization problem.

The first is in terms of disjunction:

k
max<c x|z € U P; + intcone{r*, ..., 7'} (DIS)
i=1

The second is in terms of valid inequalities:
max {¢'z | x € conv(S)} (CP)

where § is the feasible region.

In principle, if we had a method for generating either of these
reformulations, this would lead to a practical method of solution.

Instead, we usually begin with a relaxation derived from one of these two
reformulations and iteratively approximate the full formulation.

15

A Generic Algorithmic Framework

Many algorithms in optimization consist of the iterative solution of a
certain relaxation or “dual”.

The relaxation or dual is improved dynamically until an optimality
criterion is achieved.

A simple algorithm for solving MILPs is to start by solving the LP
relaxation to obtain

i € argmax,.pc' x
and the upper bound U =c¢'2 > zp

Then determine either a valid disjunction or a valid inequality that is
violated by and “add” it to the relaxation.

Re-solve the strengthened relaxation and continue this process until
U = zp (the solution to the relaxation is in S).

This vague algorithm is, at a high level, how we solve MILPs and we will
see that branch-and-bound fits into this framework.

The condition that U = zp is the basic optimality condition used in a
wide range of optimization algorithms.

16

The Branch and Bound Tree as a “Meta-Relaxation”

The branch-and-bound tree itself encodes a relaxation of our original
problem, as we mentioned in the last lecture.

As observed previously, the set T' of leaf nodes of the tree (including
those that have been pruned) constitute a valid disjunction, as follows.

— When we branch using admissible disjunctions, we associate with each
t € T a polyhedron X, described by the imposed branching constraints.
— The collection {X;};cr then defines a disjunction.

The subproblem associated with node 7 is an integer program with
feasible region SNP N X,.

The problem

max max c'x (OPT)
tel zePNXy

is then a relaxation according to our definition.

Branch and bound can be seen as a method of iteratively strengthening
this relaxation.

We will later see how we can add valid inequalities to the constraint of
P N X, to strengthen further.

