Integer Programming

Lecture 11



Putting it All Together: Search Strategies

In the last lecture, we discussed how to branch, i.e., divide the feasible
region of a subproblem into two pieces.

After branching, we still have to face the question of what node to
process next.

The strategy for deciding what node to work on next is called the search
Sstrategy.

In other words, we are determining the priority function that will be used
in the priority queue we use to keep track of the candidate nodes.

In choosing a search strategy, we might consider our goal:

— Minimize the time required to find a provably optimal solution.
— Find the best possible solution in a limited amount of time.

In practice, we may want some of each.



Basic Strategies: Best First

A reasonable approach to minimizing overall solution time is to try to
minimize the size of the search tree.

In theory, we can do this by choosing the subproblem with the best
bound (highest upper bound, if we are maximizing).

A candidate node is said to be critical if its bound exceeds the value of
an optimal solution to the IP.

Every critical node will be processed no matter what the search order.

Under mild conditions, best first is guaranteed to examine only critical
nodes, thereby minimizing the size of the search tree (why?).

However, it has some drawbacks:

— Doesn't find feasible solutions quickly (why?).

— Node setup costs.

— Memory usage.

— Fewer variables fixed by reduced cost (more about this later).



What Bound Do We Use?

We have so far left out one detail: exactly what bound we assign initially
to a new candidate subproblem?

One option is to use the final bound of the parent node, but this does
not allow us to distinguish between two children with the same parent.

A better option is to simply use the same estimate of the bound we
computed during branching.

— If we used strong branching, then use the estimate computed during
the pre-solve.
— If we are using pseudo-cost branching, use that estimate.

Below, we will also see some alternatives that use estimates of the
optimal solution value of the subproblem itself (not the relaxation).



Basic Strategies: Depth First

The depth first approach is to always choose the “deepest” node to
process next.

This avoids most of the problems with best first:

— The number of candidate nodes is minimized (saving memory).
— The node set-up costs are minimized.
— Feasible solutions are found more quickly (why?).

Unfortunately, if the initial lower bound is not very good, then we may
end up processing lots of non-critical nodes.

We want to avoid this extra expense if possible.



Estimate-based Strategies: Finding Feasible Solutions

Let's focus on a strategy for finding feasible solutions quickly.

One approach is to try to estimate the value of the optimal solution

Z; = Imax CTX
rES;

to each subproblem itself (not the relaxation).
For any subproblem S;, let

— s; =) ;min(f;,1 — f;) be the sum of the integer infeasibilities,
— U(i) be the upper bound, and
— L the global lower bound.

Also, let Sy be the root subproblem.

The best projection criterion is

&:U@+(

The best estimate criterion uses the pseudo-costs to obtain

ﬂ:U@+Z}mqgﬁJ?u—m)

I- U(O)) .

S0



Interpretation of Best Projection

Best projection is based on the implicit assumption that there is a linear
relationship between s; and the gap U (i) — z;.

In order to solve the subproblem, we need to reduce the sum of the
integer infeasibilities to zero by, e.g., further branching.

Reducing the infeasibility reduces the upper bound.

We try to figure out what the bound will be when the infeasibility is zero
and this is our estimate.

It is not always the case that our assumption about the linear relationship
holds, but it seems to hold empirically in some cases.

Scatterplot: neos-547911.dat, SYMPHONY, 2408s

15




