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Putting it All Together: Search Strategies

• In the last lecture, we discussed how to branch, i.e., divide the feasible
region of a subproblem into two pieces.

• After branching, we still have to face the question of what node to
process next.

• The strategy for deciding what node to work on next is called the search
strategy.

• In other words, we are determining the priority function that will be used
in the priority queue we use to keep track of the candidate nodes.

• In choosing a search strategy, we might consider our goal:

– Minimize the time required to find a provably optimal solution.
– Find the best possible solution in a limited amount of time.

• In practice, we may want some of each.
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Basic  Strategies:  Best  First

• A  reasonable  approach  to  minimizing  overall  solution  time  is  to  try  to 
minimize  the  size  of  the  search  tree.

• In  theory,  we  can  do  this  by  choosing  the  subproblem  with  the  best 
bound  (highest  upper  bound,  if  we  are  maximizing).

• A  candidate  node  is  said  to  be  critical  if  its  bound  exceeds  the  value  of 
an  optimal  solution  to  the  IP.

• Every  critical  node  will  be  processed  no  matter  what  the  search  order.

• Under  mild  conditions,  best  first  is  guaranteed  to  examine  only  critical 
nodes,  thereby  minimizing  the  size  of  the  search  tree  (why?).

• However,  it  has  some  drawbacks:

– Doesn’t  find  feasible  solutions  quickly  (why?).
– Node  setup  costs.
– Memory  usage.
– Fewer  variables  fixed  by  reduced  cost  (more  about  this  later).
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What Bound Do We Use?

• We have so far left out one detail: exactly what bound we assign initially
to a new candidate subproblem?

• One option is to use the final bound of the parent node, but this does
not allow us to distinguish between two children with the same parent.

• A better option is to simply use the same estimate of the bound we
computed during branching.

– If we used strong branching, then use the estimate computed during
the pre-solve.

– If we are using pseudo-cost branching, use that estimate.

• Below, we will also see some alternatives that use estimates of the
optimal solution value of the subproblem itself (not the relaxation).
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Basic Strategies: Depth First

• The depth first approach is to always choose the “deepest” node to
process next.

• This avoids most of the problems with best first:

– The number of candidate nodes is minimized (saving memory).
– The node set-up costs are minimized.
– Feasible solutions are found more quickly (why?).

• Unfortunately, if the initial lower bound is not very good, then we may
end up processing lots of non-critical nodes.

• We want to avoid this extra expense if possible.
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Estimate-based Strategies: Finding Feasible Solutions

• Let’s focus on a strategy for finding feasible solutions quickly.

• One approach is to try to estimate the value of the optimal solution

zi = max
x∈Si

to each subproblem itself (not the relaxation).

• For any subproblem Si, let

– si =
∑

j min(fj, 1− fj) be the sum of the integer infeasibilities,
– U(i) be the upper bound, and
– L the global lower bound.

• Also, let S0 be the root subproblem.

• The best projection criterion is

Ei = U(i) +

(
L− U(0)

s0

)
si

• The best estimate criterion uses the pseudo-costs to obtain

Ei = U(i) +
∑
j

min
(
P−
j fj, P

+
j (1− fj)

)
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Interpretation of Best Projection

• Best projection is based on the implicit assumption that there is a linear
relationship between si and the gap U(i)− zi.

• In order to solve the subproblem, we need to reduce the sum of the
integer infeasibilities to zero by, e.g., further branching.

• Reducing the infeasibility reduces the upper bound.

• We try to figure out what the bound will be when the infeasibility is zero
and this is our estimate.

• It is not always the case that our assumption about the linear relationship
holds, but it seems to hold empirically in some cases.
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