
Integer Programming

Lecture 11

 2

Putting it All Together: Search Strategies

• In the last lecture, we discussed how to branch, i.e., divide the feasible
region of a subproblem into two pieces.

• After branching, we still have to face the question of what node to
process next.

• The strategy for deciding what node to work on next is called the search
strategy.

• In other words, we are determining the priority function that will be used
in the priority queue we use to keep track of the candidate nodes.

• In choosing a search strategy, we might consider our goal:

– Minimize the time required to find a provably optimal solution.
– Find the best possible solution in a limited amount of time.

• In practice, we may want some of each.

2

 3

3

Basic Strategies: Best First

• A reasonable approach to minimizing overall solution time is to try to
minimize the size of the search tree.

• In theory, we can do this by choosing the subproblem with the best
bound (highest upper bound, if we are maximizing).

• A candidate node is said to be critical if its bound exceeds the value of
an optimal solution to the IP.

• Every critical node will be processed no matter what the search order.

• Under mild conditions, best first is guaranteed to examine only critical
nodes, thereby minimizing the size of the search tree (why?).

• However, it has some drawbacks:

– Doesn’t find feasible solutions quickly (why?).
– Node setup costs.
– Memory usage.
– Fewer variables fixed by reduced cost (more about this later).

 4

What Bound Do We Use?

• We have so far left out one detail: exactly what bound we assign initially
to a new candidate subproblem?

• One option is to use the final bound of the parent node, but this does
not allow us to distinguish between two children with the same parent.

• A better option is to simply use the same estimate of the bound we
computed during branching.

– If we used strong branching, then use the estimate computed during
the pre-solve.

– If we are using pseudo-cost branching, use that estimate.

• Below, we will also see some alternatives that use estimates of the
optimal solution value of the subproblem itself (not the relaxation).

4

 5

Basic Strategies: Depth First

• The depth first approach is to always choose the “deepest” node to
process next.

• This avoids most of the problems with best first:

– The number of candidate nodes is minimized (saving memory).
– The node set-up costs are minimized.
– Feasible solutions are found more quickly (why?).

• Unfortunately, if the initial lower bound is not very good, then we may
end up processing lots of non-critical nodes.

• We want to avoid this extra expense if possible.

5

 6

Estimate-based Strategies: Finding Feasible Solutions

• Let’s focus on a strategy for finding feasible solutions quickly.

• One approach is to try to estimate the value of the optimal solution

zi = max
x∈Si

to each subproblem itself (not the relaxation).

• For any subproblem Si, let

– si =
∑

j min(fj, 1− fj) be the sum of the integer infeasibilities,
– U(i) be the upper bound, and
– L the global lower bound.

• Also, let S0 be the root subproblem.

• The best projection criterion is

Ei = U(i) +

(
L− U(0)

s0

)
si

• The best estimate criterion uses the pseudo-costs to obtain

Ei = U(i) +
∑
j

min
(
P−
j fj, P

+
j (1− fj)

)

6

c⊤x

 7

Interpretation of Best Projection

• Best projection is based on the implicit assumption that there is a linear
relationship between si and the gap U(i)− zi.

• In order to solve the subproblem, we need to reduce the sum of the
integer infeasibilities to zero by, e.g., further branching.

• Reducing the infeasibility reduces the upper bound.

• We try to figure out what the bound will be when the infeasibility is zero
and this is our estimate.

• It is not always the case that our assumption about the linear relationship
holds, but it seems to hold empirically in some cases.

7

