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Describing conv(S)

• We have seen that, in theory, conv(S) has a finite description.

• If we “simply” construct that description, we could turn our MILP into
an LP.

• So why aren’t IPs easy to solve?

– The size of the description is generally HUGE!
– The number of facets of the TSP polytope for an instance with 120

nodes is more than 10100 times the number of atoms in the universe.
– It is physically impossible to write down a description of this polytope.
– Not only that, but it is very difficult in general to generate these facets

(this problem is not polynomially solvable in general).
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For Example

• For a TSP of size 15

– The number of subtour elimination constraints is 16,368.
– The number of comb inequalities is 1, 993, 711, 339, 620.
– These are only two of the know classes of facets for the TSP.

• For a TSP of size 120

– The number of subtour elimination constraints is 0.6× 1036!
– The number of comb inequalities is approximately 2× 10179!
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Valid Inequalities Revisited

• Recall that the inequality denoted by (π, π0) is valid for a polyhedron Q
if πx ≤ π0 ∀x ∈ Q.

• Note that an inequality (π, π0) is valid if and only if

π0 ≥ max
x∈Q

π>x

• Alternatively, an inequality (π, π0) is valid if

π0 ≥ F (b),

where F is a dual function with respect to the optimization problem

max
x∈Q

π>x

• In fact, many classes of valid inequalities used in solvers are generated in
this way.

• Thus, there is an inextricable link between valid inequalities and
optimization.
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Cutting Planes

• The term cutting plane usually refers to an inequality valid for conv(S),
but which is violated by the solution to the (current) LP relaxation.

• Cutting plane methods attempt to improve the bound produced by the LP
relaxation by iteratively adding cutting planes to the initial LP relaxation.

• Taken to its limit, this is an algorithm for solving MILPs that fits into
the general “dual improvement” framework.

• Adding such inequalities to the LP relaxation may improve the bound
(this is not a guarantee).
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The Separation Problem

• Formally, the problem of generating a cutting plane can be stated as
follows.

Separation Problem: Given a polyhedron Q ⊆ Rn and x∗ ∈ Rn,
determine whether x∗ ∈ Q and if not, determine (π, π0), an inequality
valid for Q such that πx∗ > π0.

• This problem is stated here independent of any solution algorithm.

• However, it is typically used as a subroutine inside an iterative method
for improving the LP relaxation.

• In such a case, x∗ is the solution to the LP relaxation (of the current
formulation, including previously generated cuts).

• We will see that the difficulty of solving this problem exactly is strongly
tied to the difficulty of the optimization problem itself.

• Any algorithm for solving the separation problem can be immediately
leveraged to produce an algorithm for solving the optimization problem.

• This algorithm is know as the cutting plane algorithm.
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Generic Cutting Plane Method

Let P = {x ∈ Rn | Ax ≤ b} be the initial formulation for

max{c>x | x ∈ S}, (MILP)

where S = P ∩ Zr+ × Rn−p+ , as defined previously.

Cutting Plane Method

P0 ← P
k ← 0
while TRUE do

Solve the LP relaxation max{c>x | x ∈ Pk} to obtain a solution xk

Solve the problem of separating xk from conv(S)
if xk ∈ conv(S) then

STOP
else

Determine an inequality (πk, πk0) valid for conv(S) but for which
π>xk > πk0 .

end if
Pk+1 ← Pk ∩ {x ∈ Rn | (πk)>x ≤ πk0}.
k ← k + 1

end while
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Questions to be Answered

• How do we solve the separation problem in practice?

• Will this algorithm terminate?

• If it does terminate, are we guaranteed to obtain an optimal solution?

8



  9

The Separation Problem as an Optimization Problem

Separation Problem: Given a polyhedron Q ⊆ Rn and x∗ ∈ Rn, determine
whether x∗ ∈ Q and if not, determine (π, π0), a valid inequality for Q such
that πx∗ > π0.

• Closer examination of the separation problem for a polyhedron reveals
that it is in fact an optimization problem.

• Consider a polyhedron Q ⊆ Rn and x∗ ∈ Rn.

• The separation problem can be formulated as

max{πx∗ − π0 | π>x ≤ π0 ∀x ∈ Q, (π, π0) ∈ Rn+1} (SEP)

along with some normalization to prevent (SEP) being unbounded.

• When Q is a polytope, we can reformulate this problem as the LP

max{πx∗ − π0 | π>x ≤ π0 ∀x ∈ E},

where E is the set of extreme points of Q.

• When Q is not bounded, the reformulation must account for the extreme
rays of Q.
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The Normalization

• There are multiple ways to normalize, e.g.,

– π0 = 1 or
– ‖π‖ = 1.

• These are equivalent with respect to reducing the separation problem to
an optimization problem

• Different normalizations will, however, result in different optimal solutions
and will behave differently in a computational setting.

• The issue of how to normalize will come up again in later lectures.
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The Polar

Definition 1. The polar of a set S is S∗ = {y ∈ Rn | yx ≤ 1 ∀x ∈ S}.

Theorem 1. Given a1, . . . , am ∈ Qn and 0 ≤ k ≤ m, let

Q1 = {x ∈ Rn | aix ≤ 1, i = 1, . . . , k; aix ≤ 0, i = k + 1, . . . ,m}

Q2 = conv({0, a1, . . . , ak}) + cone({ak+1, . . . an})

Then Q∗1 = Q2 and Q∗2 = Q1

• From this definition, we can see that if Q is a polyhedron containing the
origin, then have that

1. Q∗ is also a polyhedron containing the origin;
2. Q∗∗ = Q;
3. Q∗ is bounded if and only if Q contains the origin in its interior;
4. aff(Q∗) is the orthogonal complement of lin(Q) and dim(Q∗) +

dim(lin(Q)) = n.
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Interpreting the Polar

• The polar can be roughly interpreted as the (normalized) set of all valid
inequalities.

• Without some normalization, it would contain all scalar multiples of each
inequality.

• Because of the normalization used here, the polar is sometimes called
the 1-Polar in this context.

• There is a one-to-one correspondence between the facets of the
polyhedron and the extreme points of the 1-Polar when

– the polyhedron is full-dimensional and
– the origin is in its interior,

• Hence, the separation problem can be seen as an optimization problem
over the polar.
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The Membership Problem

Membership Problem: Given a polyhedron Q ⊆ Rn and x∗ ∈ Rn, determine
whether x∗ ∈ Q.

• The membership problem is a decision problem and is closely related to
the separation problem.

• In fact, the dual of (SEP) is a formulation for the membership problem:

min
λ∈RE+

{
0>λ

∣∣ Eλ = x∗, 1>λ = 1
}
, (MEM)

where E is a matrix whose columns are the extreme points of Q.

• In other words, we try to express x∗ as a convex combination of extreme
points of Q.

• When this LP is infeasible, the certificate is a separating hyperplane.

• We can solve this LP by column generation.

• In each iteration, a new column is “generated” by optimizing over Q.

• We can picture this algorithm in the “primal space” to understand what
it’s doing.
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Example: Separation Algorithm with Optimization Oracle

Figure 1: Polyhedron and point to be separated
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Example: Separation Algorithm with Optimization Oracle

Figure 2: Iteration 1
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Example: Separation Algorithm with Optimization Oracle

Figure 3: Iteration 2
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Example: Separation Algorithm with Optimization Oracle

Figure 4: Iteration 3
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Example: Separation Algorithm with Optimization Oracle

Figure 5: Iteration 4
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Example: Separation Algorithm with Optimization Oracle

Figure 6: Iteration 5
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The  Separation  Problem  for  the  1-Polar

• The  column  generation  algorithm  for  solving  (MEM)  can  be  interpreted 
as  a  cutting  plane  algorithm  for  solving  (SEP).

• The  separation  problem  (SEP)  for  Q  has  one  inequality  for  each  extreme 
point  of  Q.

• We  can  generate  these  inequalities  using  a  cutting  plane  algorithm.

• This  is  a  bit  circular...this  requires  solving  the  separation  problem  for  Q∗,
the  1-Polar.

• For  a  given  π∗  ∈  Rn,  the  separation  problem  for  Q∗  is  to  determine 
whether  π∗  ∈  Q∗  and  if  not,  determine  x  ∈  E  such  that  π∗x  >  1.

• In  other  words,  we  are  asking  whether  π∗  is  a  valid  inequality  for  Q.

• As  before,  this  problem  can  be  formulated  as

max{π∗x  |  x  ∈  Q},

which  is  an  optimization  problem  over  Q!
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Formal Equivalence of Separation and Optimization

Separation Problem: Given a polyhedron Q ⊆ Rn and x∗ ∈ Rn, determine
whether x∗ ∈ P and if not, determine (π, π0), a valid inequality for Q such
that πx∗ > π0.

Optimization Problem: Given a polyhedron Q, and a cost vector c ∈ Rn,
determine x∗ such that cx∗ = max{cx : x ∈ Q}.
Theorem 2. For a family of rational polyhedra Q(n, T ) whose input length
is polynomial in n and log T , there is a polynomial-time reduction of the
linear programming problem over the family to the separation problem
over the family. Conversely, there is a polynomial-time reduction of the
separation problem to the linear programming problem.

• The parameter n represents the dimension of the space.

• The parameter T represents the largest numerator or denominator of any
coordinate of an extreme point of Q (the vertex complexity).

• The ellipsoid algorithm provides the reduction of linear programming
separation to separation.

• Polarity provides the other direction.
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Classes of Inequalities

• As we have just shown, producing general facets of conv(S) is as hard
as optimizing over S.

• Thus, the approach often taken is to solve a “relaxation” of the separation
problem.

• This “relaxation” is usually obtained in one of several ways.

– It can be obtained in the usual way by relaxing some constraints to
obtain a more tractable problem.

– The “structure” of the inequalities may be somehow restricted to make
the right-hand side easy to compute.

– We may also use a dual function to compute the right-hand side rather
than computing the “optimal” right-hand side.

• We will see examples of all these in later lectures.

• In either of the first two cases, the class of inequalities we want to
generate typically defines a polyhedron C.

• C is what we earlier called the closure.

• The separation problem for the class is the separation problem over the
closure.
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