Integer Programming

Lecture 12



Describing conv(S)

e We have seen that, in theory, conv(S) has a finite description.

o If we “simply” construct that description, we could turn our MILP into
an LP.

e So why aren’t IPs easy to solve?

— The size of the description is generally HUGE!

— The number of facets of the TSP polytope for an instance with 120
nodes is more than 10 times the number of atoms in the universe.

— It is physically impossible to write down a description of this polytope.

— Not only that, but it is very difficult in general to generate these facets
(this problem is not polynomially solvable in general).



For Example

e For a TSP of size 15

— The number of subtour elimination constraints is 16,368.
— The number of comb inequalities is 1,993,711, 339, 620.
— These are only two of the know classes of facets for the TSP.

e For a TSP of size 120

— The number of subtour elimination constraints is 0.6 x 103!
— The number of comb inequalities is approximately 2 x 1017



Valid Inequalities Revisited
e Recall that the inequality denoted by (7, 1) is valid for a polyhedron Q
if mx < mg Vo € O.
e Note that an inequality (7, ) is valid if and only if

To =~ max 7l

reQ

e Alternatively, an inequality (7, m) is valid if
70 Z F(b),

where F' is a dual function with respect to the optimization problem

max 7TTCC

reQ

e In fact, many classes of valid inequalities used in solvers are generated in
this way.

e Thus, there is an inextricable link between valid inequalities and
optimization.



Cutting Planes

The term cutting plane usually refers to an inequality valid for conv(S),
but which is violated by the solution to the (current) LP relaxation.

Cutting plane methods attempt to improve the bound produced by the LP
relaxation by iteratively adding cutting planes to the initial LP relaxation.

Taken to its limit, this is an algorithm for solving MILPs that fits into
the general “dual improvement” framework.

Adding such inequalities to the LP relaxation may improve the bound
(this is not a guarantee).



The Separation Problem

Formally, the problem of generating a cutting plane can be stated as
follows.

Separation Problem: Given a polyhedron @ C R"™ and 2* € R”,
determine whether x* € Q and if not, determine (7, ), an inequality
valid for O such that 7z* > .

This problem is stated here independent of any solution algorithm.

However, it is typically used as a subroutine inside an iterative method
for improving the LP relaxation.

In such a case, z* is the solution to the LP relaxation (of the current
formulation, including previously generated cuts).

We will see that the difficulty of solving this problem exactly is strongly
tied to the difficulty of the optimization problem itself.

Any algorithm for solving the separation problem can be immediately
leveraged to produce an algorithm for solving the optimization problem.

This algorithm is know as the cutting plane algorithm.



Generic Cutting Plane Method
Let P = {x € R" | Ax < b} be the initial formulation for

max{c'z | z € S}, (MILP)

where S = P NZ" x R™", as defined previously.

Cutting Plane Method

Po P
k<0
while TRUE do
Solve the LP relaxation max{c'xz | z € P} to obtain a solution x
Solve the problem of separating z* from conv(S)
if 2% € conv(S) then
STOP
else
Determine an inequality (7", 7f) valid for conv(S) but for which

7TT£IJk > W]g

end if
Pri1 < PN {x e R* | (x¥) 'z < 7k},
k+—k+1

end while

k



Questions to be Answered

e How do we solve the separation problem in practice?
e Will this algorithm terminate?

e |f it does terminate, are we guaranteed to obtain an optimal solution?



The Separation Problem as an Optimization Problem

Separation Problem: Given a polyhedron ©Q C R" and x* € R"™, determine
whether * € Q and if not, determine (7, 7p), a valid inequality for Q such
that mx™* > .

e Closer examination of the separation problem for a polyhedron reveals
that it is in fact an optimization problem.

e Consider a polyhedron @ C R™ and z* € R"™.
e The separation problem can be formulated as
max{ra* — 7w | 7' x < 7o Vo € Q, (7, 1) € R} (SEP)
along with some normalization to prevent (SEP) being unbounded.
e When Q is a polytope, we can reformulate this problem as the LP
max{rz* — 1 | 7'z < 7y Vo € £},
where £ is the set of extreme points of O.

e When O is not bounded, the reformulation must account for the extreme
rays of O.
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The Normalization

There are multiple ways to normalize, e.g.,

— m9 =1 or
= |[=] = 1.

These are equivalent with respect to reducing the separation problem to
an optimization problem

Different normalizations will, however, result in different optimal solutions
and will behave differently in a computational setting.

The issue of how to normalize will come up again in later lectures.
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The Polar

Definition 1. The polar of a set S is S* ={y € R" | yz <1Vx € S}.

Theorem 1. Given a',...,a™ € Q" and 0 < k < m, let

Qi ={zceR"|adx<1l,i=1,...,kia'c<0,i=k+1,...,m}

Oy = Conv({O, al, - ,ak}) + Cone({akﬂa fe an})

Then QF = Qg and Q5 = 9O,

e From this definition, we can see that if O is a polyhedron containing the
origin, then have that

1.
2. Q7 =0

3.

4. aff(Q*) is the orthogonal complement of lin(Q) and dim(Q*) +

Q™ is also a polyhedron containing the origin;

Q™ is bounded if and only if Q contains the origin in its interior;

dim(lin(Q)) = n.
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Interpreting the Polar

The polar can be roughly interpreted as the (normalized) set of all valid
inequalities.

Without some normalization, it would contain all scalar multiples of each
inequality.

Because of the normalization used here, the polar is sometimes called
the 1-Polar in this context.

There is a one-to-one correspondence between the facets of the
polyhedron and the extreme points of the 1-Polar when

— the polyhedron is full-dimensional and
— the origin is in its interior,

Hence, the separation problem can be seen as an optimization problem
over the polar.
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The Membership Problem

Membership Problem: Given a polyhedron Q C R" and * € R", determine
whether z* € O.

e [he membership problem is a decision problem and is closely related to
the separation problem.

e In fact, the dual of (SEP) is a formulation for the membership problem:
min {0'A | EA=2%1"\A=1}, (MEM)
AeRE
where E' is a matrix whose columns are the extreme points of O.

e In other words, we try to express x* as a convex combination of extreme
points of Q.

e When this LP is infeasible, the certificate is a separating hyperplane.
e \We can solve this LP by column generation.
e In each iteration, a new column is “generated” by optimizing over Q.

e \We can picture this algorithm in the “primal space” to understand what
it's doing.
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Example: Separation Algorithm with Optimization Oracle

— Polyhedfon P

Figure 1: Polyhedron and point to be separated
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Example: Separation Algorithm with Optimization Oracle

S Polyhédron P

- - Separating Hyperplane

Figure 2: lteration 1
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Example: Separation Algorithm with Optimization Oracle

— F'ol-yhed ron P

: : - - Convex Hull of Generated Points
Ar = - — Separating Hyperplane

Figure 3: lteration 2
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Example: Separation Algorithm with Optimization Oracle

' —_ F'ol-yhedron P
i - - Convex Hull of Generated Points
] R N ; - — Separating Hyperplane

Figure 4: lteration 3
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Example: Separation Algorithm with Optimization Oracle
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R o : - — Separating Hyperplane 1
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Figure 5: lteration 4
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Example: Separation Algorithm with Optimization Oracle

! —_ F'ol-yhedron P
\ - — Convex Hull of Generated Points
L RREE & are : - — Separating Hyperplane T
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Figure 6: lteration 5
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The Separation Problem for the 1-Polar

The column generation algorithm for solving (MEM) can be interpreted
as a cutting plane algorithm for solving (SEP).

The separation problem (SEP) for Q has one inequality for each extreme
point of Q.

We can generate these inequalities using a cutting plane algorithm.

This is a bit circular...this requires solving the separation problem for O,
the 1-Polar.

For a given m* € R", the separation problem for Q" is to determine
whether 7* € O* and if not, determine 2z € £ such that 7*x > 1.

*

In other words, we are asking whether 7* is a valid inequality for Q.

As before, this problem can be formulated as

max{n*x | x € Q},

which is an optimization problem over Q!
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Formal Equivalence of Separation and Optimization

Separation Problem: Given a polyhedron © C R"™ and z* € R"™, determine
whether x* € P and if not, determine (7, my), a valid inequality for Q such
that ma™ > .

Optimization Problem: Given a polyhedron Q, and a cost vector ¢ € R",
determine x* such that cz* = max{cx : z € Q}.

Theorem 2. For a family of rational polyhedra Q(n,T') whose input length
18 polynomaal in n and logT', there is a polynomaial-time reduction of the
linear programming problem owver the family to the separation problem
over the family. Conversely, there is a polynomial-time reduction of the
separation problem to the linear programming problem.

e The parameter n represents the dimension of the space.

e The parameter 1" represents the largest numerator or denominator of any
coordinate of an extreme point of Q (the vertex complexity).

e The ellipsoid algorithm provides the reduction of linear programming
separation to separation.

e [olarity provides the other direction.
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Classes of Inequalities

As we have just shown, producing general facets of conv(S) is as hard
as optimizing over §.

Thus, the approach often taken is to solve a “relaxation” of the separation
problem.

This “relaxation” is usually obtained in one of several ways.

— It can be obtained in the usual way by relaxing some constraints to
obtain a more tractable problem.

— The “structure” of the inequalities may be somehow restricted to make
the right-hand side easy to compute.

— We may also use a dual function to compute the right-hand side rather
than computing the “optimal” right-hand side.

We will see examples of all these in later lectures.

In either of the first two cases, the class of inequalities we want to
generate typically defines a polyhedron C.

C is what we earlier called the closure.

The separation problem for the class is the separation problem over the
closure.



