Integer Programming

Lecture 13



Generating Cutting Planes: Two Basic Viewpoints

There are a number of different points of view from which one can derive
the standard methods used to generate cutting planes for general MILPs.

As we have seen before, there is an algebraic point of view and a
geometric point of view.

Algebraic:

— Take combinations of the known valid inequalities.
— Use rounding to produce stronger ones.

Geometric:

— Use a disjunction (as in branching) to generate several disjoint
polyhedra whose union contains S.
— Generate inequalities valid for the convex hull of this union.

Although these seem like very different approaches, they turn out to be
very closely related.



Generating Valid Inequalities: Algebraic Viewpoint

Recall that valid inequalities for P can be obtained by taking non-negative
linear combinations of the rows of (A, D).

Except for one pathological case!, all valid inequalities for P are either
equivalent to or dominated by an inequality of the form

uAr < ub,u € RT.

We are taking combinations of inequalities existing in the description, so
any such inequalities will be redundant for P itself.

Nevertheless, such redundant inequalities can be strengthened by a simple
procedure that ensures they remain valid for conv(S).

Lthe pathological case is when both the primal and dual problems are infeasible.



Generating Valid Inequalities for conv(S)

As usual, we consider the MILP

zip =max{c x|z € S}, (MILP)

where
P ={zcR"| Az < b} (FEAS-LP)
S=Pn(Z xR (FEAS-MIP)

e All inequalities valid for P are also valid for conv(S), but they are not
cutting planes.

e \We can do better.

e We need the following simple principle: if a < b and a is an integer, then
a < |b|.

e Believe it or not, this simple fact is all we need to generate all valid
inequalities for conv(S)!



Simple Example

e Suppose 41 + 2x5 < 3 is an inequality in the formulation P for a given
MILP.

e Dividing through by 2, we get that 2z, + x5 < 3/2 is also valid for P.

e Using the rounding principle, we can easily derive that 221 + 22 < 1 is
valid for conv(S).



Back to the Matching Problem
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Recall again the matching problem.

min E Celle

e={i,j}€E
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r. € {0, 1}, Ve =1{i,j} € E.



Generating the Odd Cut Inequalities

Recall that each odd cutset induces a possible valid inequality.

Z r. > 1,5 C N,|S| odd.
e€d(S)

Let's derive these another way.

— Consider an odd set of nodes U.

— Sum the (relaxed) constraints » (¢, e @i < 1forieU.

— This results in the inequality 2 ) Te + Dceson Te < U]

— Dividing through by 2, we obtain > . 55 e + : D ees(u) Le < = U.
— We can drop the second term of the sum to obtain

S oz < %\U\.

ecE(U)

— What's the last step?



Chvatal Inequalities

Suppose we can find a u € R’ such that m = uA is integer (uA; € ZP,
uAc =0) and g = ub & Z.

In this case, we have 7'z € Z forall x € S, and so 7'z < | | for all
r e S.

In other words, (m, |mg]) is not only a valid inequality, but also a split

disjunction for which

{veP|r'a>[m)+1} =0 (1)

Such an inequality is called a Chvatal inequality.

The obvious question that arises is how to find a uw such that uA is
integer, as this seems difficult.

Recall that we purposefully did not impose non-negativity of the variables
in our standard definition of §.

In practice, if we do indeed have non-negativity, we can derive a more
straighforward procedure.



Chvatal-Gomory Inequalities

Now let's assume that P C R’} and let u € R} be such that uAc > 0.
First, observe that (uA, ub) is valid for P.

Since the variables are non-negative, we have that uAcxc > 0, so

p
Z(qu)xz <ubVx P

1=1

Again because the variables are non-negative, we have that

| uA;|x; <ubVr e P

p
=1

1

Finally, we have that

p
ZLUAZJ xr; < |ub| Vx € S,
i=1

which is a Chvatal inequality known as a Chvatal-Gomory Inequality.
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Chvatal-Gomory Inequalities

How did we avoid having to find a uw such that uA is integer?

If we explicity append non-negativiity constraints to the rows of A, the
associated multipliers effectively take up the slack when uA is non-integer.

If we let ™ be an inequality derived from A augmented with non-negativity,

then the requirements become v € R, v € R’} and
T, = uA; —v; € Ziforl <1 <p
m=uA;—v; = Oforp+1<1<n.

v; will be non-negative as as long as we have

v; > uA; — |uA;] for 1 <i<p
v, = uA; >0 forp+1<i1<n
Taking v; = uA; — |uA;| for 1 <i < p, we then obtain that

p

1=1 1=1

is a C-G inequality for all u € R such that uA¢c > 0.

(C-G)
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The Chvatal-Gomory Procedure

. Choose a weight vector u € R such that uAc > 0.

Obtain the valid inequality > ;. (uA;)x; < ub.
Round the coefficients down to obtain > 7 . (|ud;|)x; < ub.

Finally, round the right-hand side down to obtain the valid inequality

p

S ((udi)a < Lub)

1=1

This procedure is called the Chvatal-Gomory rounding procedure, or
simply the C-G procedure.

Surprisingly, for pure ILPs (p = n), any inequality valid for conv(S) can
be produced by a finite number of applications of this procedure!

Note that this procedure is recursive and requires exploiting inequalities
derived in previous rounds to get new inequalities.
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Assessing the Procedure

Although it is theoretically possible to generate any valid inequality using
the C-G procedure, this is not true in practice.

The two biggest challenges are numerical errors and slow convergence.

The slow convergence is because the inequalities produced are not very
strong in general.

Typically, we do not even obtain an inequality supporting conv(S).

This is is because the rounding only “pushes” the inequality until it meets
some point in Z"™, which may or may not even be in S.

We cannot do better than this without taking additional structural
information into account.

We have to be careful to ensure the generated hyperplane even includes
an integer point!

We illustrate with an example next.
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Example: C-G Cuts

Consider the polyhedron P described by the constraints

41 + 1o < 28 (2)
21 + dxy < 27 (3)
x1— 22 <1 (4)
x1, T2 >0 (5)

Graphically, it can be easily determined that the facet-inducing valid
inequalities describing conv(S) = conv(P N Z?) are

1+ 229 < 15 (6)
Ty —x9 < 1 (7)
r1 <5 (8)

Ty <6 (9)

1 >0 (10)

T2 > 0 (11)
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Example: C-G Cuts (cont.)
Consider the LP relaxation of the ILP

max{2z; + dbxy | z € S},

with optimal basic feasible solution indicated below.

(17,/3,16/3)

Figure 1: Convex hull of §
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Example: C-G Cuts (cont.)

e Suppose we combine the inequalities from the formulation that are
binding at optimality with weights 2/3 and 1/3.

e \We get the inequality

e Rounding, we obtain
35131 -+ 2562 S 27, (C—G)
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Gomory Inequalities

e For the derivation of Gomory inequalities, we consider pure integer
programs for simplicity (we'll address the general case next lecture).

e Let's consider T, the set of solutions to a pure ILP with one equation:

( )
n

T=qxveZl ZajCCj:GO>

g=1

\ /

e Foreach j, let f; =a; — |a;| and let fo = ap— |ap]. Then equivalently

T={aeZl | fizj=fo+lao) =Y las]z,

e Since ) 7| fjz; > 0and fy <1, then |ag| > > " |a;]z; so

Z fixzj = fo
j=1

is a valid inequality for & called a Gomory inequality.
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Gomory Cuts from the Tableau

Gomory cutting planes can also be derived directly from the tableau while
solving an LP relaxation in standard form with the simplex algorithm.

We assume for now that A and b are integral so that the slack variables
also have integer values implicitly (this is wlog if P is rational).

Consider the set
{(z,s) € Z}™™ | Ax+ Is =b}

in which the LP relaxation of an ILP is put in standard form.

The tableau corresponding to basis B C {1,...,n} is

A Ar + Ag's = AG'D

Each row of this tableau corresponds to a weighted combination of the
original constraints.

The weight vectors are the rows of Agl.
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Gomory Cuts from the Tableau (cont.)

e The k' row of the tableau is obtained by combining the equations in
the standard form to obtain

ANAx + As = \b,
where A; is the j'® column of A and \ is the &' row of A",

e Applying the previous procedure, we can obtain the valid inequality

(A — [M )z + (A — [A])s > \b— | Mb].

e We then typically substitute out the slack variables by using the equation
s = b — Ax to obtain this cut in the original space.

([ANA] = [AJA)z < | Ab] — | A]b. (GF)
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Gomory Versus C-G

e The Gomory cut (GF) is equivalent to the C-G inequality with weights
u; = A\ — | \;|, as we show next.

e To see this, let u; = A\; — | \;], so that
uAxr = NAx — | A |Ax < Xb— | \]|b = ub.
e Since A and b are integral by assumption, rounding then yields
([AA] = [AJA)z < [Ab] — [A]D,

which is exactly the inequality (GF).
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Strength of Gomory Cuts from the Tableau

Consider a row of the tableau in which the value of the basic variable z;
Is not an integer.

Applying the procedure from the last slide, the resulting inequality will
only involve nonbasic variables and will be of the form

ijCCjZfo
JEN
N=A{l,...,n}\Band 0< f; <1land 0 < fy < 1.

The left-hand side of this cut has value zero with respect to the solution
to the current LP relaxation.

We can conclude that the generated inequality will be violated by the
current solution to the LP relaxation.

Note that this cut is calculated so as to avoid cutting off any additional
integer points, not just those in P.
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Example: Gomory Cuts

Consider the optimal tableau of the LP relaxation of the ILP
max{2z; + 5xo | x € Z? satisfying (2)-(5)},

shown in Table 1.

Basic var. I1 T2 S1 S92 S3 RHS
Z 0 1 -1/15 4/15 0 | 16/3
S5 0o o0 -1/3 1/3 1] 2/3
1 1 0 4/15 -1/15 0 | 17/3

Table 1: Optimal tableau of the LP relaxation
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Example: Gomory Cuts (cont.)

The Gomory cut from the first row is

14 N 4 N 1
157 1577 T 3
In terms of 1 and x5, we have

Azy + 225 < 33, (G-C1)
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Example: Equivalent C-G Inequality (cont.)

Let's derive the same inequality as a C-G inequality.
We combine the first two inequalities from the original formulation with
weights —1/15 — (—1) = 14/15 and 4/15 to get

dxq1 + 229 < 100/3.

After rounding, this is the Gomory inequality from the previous slide.

A Gomory inequality is always a C-G cut obtained by combining
inequalities that are binding at the optimal basic feasible solution.

— Binding constraints correspond to non-basic slack variables.

— Columns in the tableau associated with basic slack variables are unit
columns.

— This means the slack constraints get zero weight.

Combining the binding constraint yields an inequality that is satisfied at
equality by the optimal basic feasible solution.

We then round to get an inequality violated by that basic feasible solution.
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Trivial Strengthening

Note the inquality can be trivially strengthened by dividing by 2.

Since the gcd of the coefficients is 2, there are no integer points satisfying
4dx1 + 225 = 33.

Thus, the right-hand side can be strengthened further without removing
any integer point.

Dividing by 2 and rounding, we get

2371 —+ X9 S 16,

The following proposition states formally what is necessary to ensure the
strongest possible C-G inequality.

Proposition 1. Let S = {z € Z" | } . yajz; < b}, where aj € Z
for j € N, and let k = gcd{ay,...,a,}. Then conv(S) = {z €
R™ | 2 jenlaj/k)z; < [b/k]}.
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Example: Gomory Cuts (cont.)

The Gomory cut from the second row is

2
3

In terms of x7 and x5, we have
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Example: Gomory Cuts (cont.)

The Gomory cut from the third row is

4 +14 2
15+ 1572 = 3

In terms of x7 and x5, we have

T1+ 2372 < ]-67

1.0

(G-C3)
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Example: Gomory Cuts (cont.)

This picture shows the effect of adding all Gomory cuts in the first round.
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Connection with Dual Functions

e Recall that an inequality (7, 7o) is valid for conv(S) if

mo = F(b),

where F' is a dual function with respect to the optimization problem

max 7TT.I'

reS

e When uA; € ZP, uAc > 0, then F'(b) = |ub| is a dual function for

max 7TT:L',

zeS

where m = uA.

e Thus, Chvatal inequalities can be derived directly using an argument
based on duality.
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Applying the Procedure Recursively

This procedure can be applied recursively by adding the generated
inequalities to the formulation and performing the same steps again.

Any inequality that can be obtained by recursive application of the C-G
procedure (or is dominated by such an inequality) is a C-G inequality.

For pure ILPs, all valid inequalities are C-G inequalities.
Theorem 1. Let (w,mg) € Z"! be a wvalid inequality for S = {x €
7% | Az < b} # 0. Then (m,m) is a C-G inequality for S.

In the next few slides, we will make these ideas more precise.
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Elementary Closure

The elementary closure, or C-G closure, of a polyhedron P C R” is the

intersection of half-spaces defined by C-G inequalities, e.g.,
e(P)={zecP |7z <mym=|ua;| for 1 <j<p,

mj=0forp+1<j<n,m=|ubl,uc R}

Although it is not obvious, one can show that the elementary closure /s

a polyhedron.

Optimizing over this polyhedron is difficult (NP-hard) in general.

For a general polyhedron P, not necessarily contained in the non-negative

orthant, we can similarly define the Chvatal closure.

POH — {5 € P | 77w < mo,m = A, mo = [ub), uAs € 77, udc = 0)
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Rank of C-G Inequalities

e The rank k C-G closure P* of P is defined recursively as follows.

— The rank 1 closure of P is Pt = e(P).

— The rank k closure P¥ = ¢(P*~1) is the elementary closure of the
pr-1

— An inequality is rank k£ with respect to P if it is valid for the rank k
closure P* and not for P*—1.

e The C-G rank of P is the maximum rank of any facet-defining inequality
of conv(S) with respect to P.

e We can define a similar notion of rank with respect to the Chvatal
closure.
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A Finite Cutting Plane Procedure

e Under mild assumptions on the algorithm used to solve the LP, this yields
a general algorithm for solving (pure) ILPs.

e The details are contained in Section 5.2.5 of CCZ.
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Determining the C-G Rank

By solving an LP, it can be determined whether a given inequality has
maximum rank 1.

Proposition 2. If (7, m) € e(P), then my > |mt|, where nit =
maxX,cp T ' X
Alternatively, if m € Z", the inequality (7, [75]) is rank 1.

Further, any valid inequality (7, mg) for which 7y < [7d*| has rank at
least 2.

This tells us that the effectiveness of the C-G procedure is strongly tied
to the strength of our original formulation.

In general it is difficult to determine the rank of any inequality that is
not rank 1.
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Example: C-G Rank

Let's consider the C-G rank of the inequality
T1 + 2372 < 157

which is facet-defining for conv(S) in our example.

We have
max xri + 233‘2 — 49/3 (12)
x€P

Since |49/3| = 16, we conclude that this is not a rank 1 cut.

Note that the dual solution to the LP (12) gives us weights with which
to combine the original inequalities to get a C-G cut.

This is the strongest possible C-G cut of rank 1 with those coefficients.
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Bounding The C-G Rank of a Polyhedron

For most classes of MILPs, the rank of the associated polyhedron is an
unbounded function of the dimension.

Example:
- P={zeR} |x;+z;<1fori,jeV,i#j}and S=P"NZL"

—conv(S)={z eRY | ) .yx; <1}
— rank(P) = O(logn).

For a family of polyhedra with bounded rank, there is a certificate for
the validity of any given inequality.

This leads to a certificate of optimality for the associated optimization
problem.

Hence, it is unlikely that the problem of optimizing over any family of
MILPs formulated by polyhedra with bounded rank is in NP-hard?.

Conversely, for any family of MILPs that is in NP-hard, the associated
family of polyhedra is likely to have unbounded rank.

2l\/Iore on what this means later



