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Generating Cutting Planes: Two Basic Viewpoints

• There are a number of different points of view from which one can derive
the standard methods used to generate cutting planes for general MILPs.

• As we have seen before, there is an algebraic point of view and a
geometric point of view.

• Algebraic:

– Take combinations of the known valid inequalities.
– Use rounding to produce stronger ones.

• Geometric:

– Use a disjunction (as in branching) to generate several disjoint
polyhedra whose union contains S.

– Generate inequalities valid for the convex hull of this union.

• Although these seem like very different approaches, they turn out to be
very closely related.
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Generating Valid Inequalities: Algebraic Viewpoint

• Recall that valid inequalities for P can be obtained by taking non-negative
linear combinations of the rows of (A, b).

• Except for one pathological case1, all valid inequalities for P are either
equivalent to or dominated by an inequality of the form

uAx ≤ ub, u ∈ Rm
+ .

• We are taking combinations of inequalities existing in the description, so
any such inequalities will be redundant for P itself.

• Nevertheless, such redundant inequalities can be strengthened by a simple
procedure that ensures they remain valid for conv(S).

1the pathological case is when both the primal and dual problems are infeasible.
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Generating Valid Inequalities for conv(S)
As usual, we consider the MILP

zIP = max{c⊤x | x ∈ S}, (MILP)

where

P = {x ∈ Rn | Ax ≤ b} (FEAS-LP)

S = P ∩ (Zp
+ × Rn−p

+ ) (FEAS-MIP)

• All inequalities valid for P are also valid for conv(S), but they are not
cutting planes.

• We can do better.

• We need the following simple principle: if a ≤ b and a is an integer, then
a ≤ ⌊b⌋.

• Believe it or not, this simple fact is all we need to generate all valid
inequalities for conv(S)!

4



   5

Simple Example

• Suppose 4x1 + 2x2 ≤ 3 is an inequality in the formulation P for a given
MILP.

• Dividing through by 2, we get that 2x1 + x2 ≤ 3/2 is also valid for P.

• Using the rounding principle, we can easily derive that 2x1 + x2 ≤ 1 is
valid for conv(S).
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Back to the Matching Problem

Recall again the matching problem.

min
∑

e={i,j}∈E

cexe

s.t.
∑

{j|{i,j}∈E}

xij = 1, ∀i ∈ N

xe ∈ {0, 1}, ∀e = {i, j} ∈ E.

6



   7

Generating the Odd Cut Inequalities

• Recall that each odd cutset induces a possible valid inequality.∑
e∈δ(S)

xe ≥ 1, S ⊂ N, |S| odd.

• Let’s derive these another way.

– Consider an odd set of nodes U .
– Sum the (relaxed) constraints

∑
{j|{i,j}∈E} xij ≤ 1 for i ∈ U .

– This results in the inequality 2
∑

e∈E(U) xe +
∑

e∈δ(U) xe ≤ |U |.
– Dividing through by 2, we obtain

∑
e∈E(U) xe +

1
2

∑
e∈δ(u) xe ≤ 1

2|U |.
– We can drop the second term of the sum to obtain

∑
e∈E(U)

xe ≤
1

2
|U |.

– What’s the last step?
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Chvátal Inequalities

• Suppose we can find a u ∈ Rm
+ such that π = uA is integer (uAI ∈ Zp,

uAC = 0) and π0 = ub ̸∈ Z.

• In this case, we have π⊤x ∈ Z for all x ∈ S, and so π⊤x ≤ ⌊π0⌋ for all
x ∈ S.

• In other words, (π, ⌊π0⌋) is not only a valid inequality, but also a split
disjunction for which

{x ∈ P | π⊤x ≥ ⌊π0⌋+ 1} = ∅ (1)

• Such an inequality is called a Chvátal inequality.

• The obvious question that arises is how to find a u such that uA is
integer, as this seems difficult.

• Recall that we purposefully did not impose non-negativity of the variables
in our standard definition of S.

• In practice, if we do indeed have non-negativity, we can derive a more
straighforward procedure.
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Chvátal-Gomory Inequalities

• Now let’s assume that P ⊆ Rn
+ and let u ∈ Rn

+ be such that uAC ≥ 0.

• First, observe that (uA, ub) is valid for P.

• Since the variables are non-negative, we have that uACxC ≥ 0, so

p∑
i=1

(uAi)xi ≤ ub ∀x ∈ P

• Again because the variables are non-negative, we have that

p∑
i=1

⌊uAi⌋xi ≤ ub ∀x ∈ P

• Finally, we have that

p∑
i=1

⌊uAi⌋xi ≤ ⌊ub⌋ ∀x ∈ S,

which is a Chvátal inequality known as a Chvátal-Gomory Inequality.
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Chvátal-Gomory Inequalities

• How did we avoid having to find a u such that uA is integer?

• If we explicity append non-negativiity constraints to the rows of A, the
associated multipliers effectively take up the slack when uA is non-integer.

• If we let π be an inequality derived from A augmented with non-negativity,
then the requirements become u ∈ Rm

+ , v ∈ Rn
+ and

πi = uAi − vi ∈ Z for 1 ≤ i ≤ p

πi = uAi − vi = 0 for p+ 1 ≤ i ≤ n.

• vi will be non-negative as as long as we have

vi ≥ uAi − ⌊uAi⌋ for 1 ≤ i ≤ p

vi = uAi ≥ for0 p+ 1 ≤ i ≤ n

• Taking vi = uAi − ⌊uAi⌋ for 1 ≤ i ≤ p, we then obtain that

p∑
i=1

πixi =

p∑
i=1

⌊uAi⌋xi ≤ ⌊ub⌋ = π0 (C-G)

is a C-G inequality for all u ∈ Rm
+ such that uAC ≥ 0.
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The Chvátal-Gomory Procedure

1. Choose a weight vector u ∈ Rm
+ such that uAC ≥ 0.

2. Obtain the valid inequality
∑p

i=1(uAi)xi ≤ ub.

3. Round the coefficients down to obtain
∑p

i=1(⌊uAi⌋)xi ≤ ub.

4. Finally, round the right-hand side down to obtain the valid inequality

p∑
i=1

(⌊uAi⌋)xi ≤ ⌊ub⌋

• This procedure is called the Chvátal-Gomory rounding procedure, or
simply the C-G procedure.

• Surprisingly, for pure ILPs (p = n), any inequality valid for conv(S) can
be produced by a finite number of applications of this procedure!

• Note that this procedure is recursive and requires exploiting inequalities
derived in previous rounds to get new inequalities.
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Assessing the Procedure

• Although it is theoretically possible to generate any valid inequality using
the C-G procedure, this is not true in practice.

• The two biggest challenges are numerical errors and slow convergence.

• The slow convergence is because the inequalities produced are not very
strong in general.

• Typically, we do not even obtain an inequality supporting conv(S).

• This is is because the rounding only “pushes” the inequality until it meets
some point in Zn, which may or may not even be in S.

• We cannot do better than this without taking additional structural
information into account.

• We have to be careful to ensure the generated hyperplane even includes
an integer point!

• We illustrate with an example next.
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Example: C-G Cuts

Consider the polyhedron P described by the constraints

4x1 + x2 ≤ 28 (2)

x1 + 4x2 ≤ 27 (3)

x1 − x2 ≤ 1 (4)

x1, x2 ≥ 0 (5)

Graphically, it can be easily determined that the facet-inducing valid
inequalities describing conv(S) = conv(P ∩ Z2) are

x1 + 2x2 ≤ 15 (6)

x1 − x2 ≤ 1 (7)

x1 ≤ 5 (8)

x2 ≤ 6 (9)

x1 ≥ 0 (10)

x2 ≥ 0 (11)
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Example: C-G Cuts (cont.)

Consider the LP relaxation of the ILP

max{2x1 + 5x2 | x ∈ S},

with optimal basic feasible solution indicated below.

Figure 1: Convex hull of S
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Example: C-G Cuts (cont.)

• Suppose we combine the inequalities from the formulation that are
binding at optimality with weights 2/3 and 1/3.

• We get the inequality
3x1 + 2x2 ≤ 83/3.

• Rounding, we obtain
3x1 + 2x2 ≤ 27, (C-G)

15



   16

Gomory Inequalities

• For the derivation of Gomory inequalities, we consider pure integer
programs for simplicity (we’ll address the general case next lecture).

• Let’s consider T , the set of solutions to a pure ILP with one equation:

T =

x ∈ Zn
+

∣∣∣∣∣∣
n∑

j=1

ajxj = a0


• For each j, let fj = aj−⌊aj⌋ and let f0 = a0−⌊a0⌋. Then equivalently

T =

x ∈ Zn
+

∣∣∣∣∣∣
n∑

j=1

fjxj = f0 + ⌊a0⌋ −
n∑

j=1

⌊aj⌋xj


• Since

∑n
j=1 fjxj ≥ 0 and f0 < 1, then ⌊a0⌋ ≥

∑n
j=1⌊aj⌋xj so

n∑
j=1

fjxj ≥ f0

is a valid inequality for S called a Gomory inequality.

16



   17

Gomory Cuts from the Tableau

• Gomory cutting planes can also be derived directly from the tableau while
solving an LP relaxation in standard form with the simplex algorithm.

• We assume for now that A and b are integral so that the slack variables
also have integer values implicitly (this is wlog if P is rational).

• Consider the set {
(x, s) ∈ Zn+m

+ | Ax+ Is = b
}

in which the LP relaxation of an ILP is put in standard form.

• The tableau corresponding to basis B ⊆ {1, . . . , n} is

A−1
B Ax+A−1

B s = A−1
B b

• Each row of this tableau corresponds to a weighted combination of the
original constraints.

• The weight vectors are the rows of A−1
B .
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Gomory Cuts from the Tableau (cont.)

• The kth row of the tableau is obtained by combining the equations in
the standard form to obtain

λAx+ λs = λb,

where Aj is the jth column of A and λ is the kth row of A−1
B .

• Applying the previous procedure, we can obtain the valid inequality

(λA− ⌊λA⌋)x+ (λ− ⌊λ⌋)s ≥ λb− ⌊λb⌋.

• We then typically substitute out the slack variables by using the equation
s = b−Ax to obtain this cut in the original space.

(⌊λA⌋ − ⌊λ⌋A)x ≤ ⌊λb⌋ − ⌊λ⌋b. (GF)
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Gomory Versus C-G

• The Gomory cut (GF) is equivalent to the C-G inequality with weights
ui = λi − ⌊λi⌋, as we show next.

• To see this, let ui = λi − ⌊λi⌋, so that

uAx = λAx− ⌊λ⌋Ax ≤ λb− ⌊λ⌋b = ub.

• Since A and b are integral by assumption, rounding then yields

(⌊λA⌋ − ⌊λ⌋A)x ≤ ⌊λb⌋ − ⌊λ⌋b,

which is exactly the inequality (GF).
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Strength of Gomory Cuts from the Tableau

• Consider a row of the tableau in which the value of the basic variable xi

is not an integer.

• Applying the procedure from the last slide, the resulting inequality will
only involve nonbasic variables and will be of the form∑

j∈N

fjxj ≥ f0

N = {1, . . . , n} \B and 0 ≤ fj < 1 and 0 < f0 < 1.

• The left-hand side of this cut has value zero with respect to the solution
to the current LP relaxation.

• We can conclude that the generated inequality will be violated by the
current solution to the LP relaxation.

• Note that this cut is calculated so as to avoid cutting off any additional
integer points, not just those in P.
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Example: Gomory Cuts

Consider the optimal tableau of the LP relaxation of the ILP

max{2x1 + 5x2 | x ∈ Z2 satisfying (2)–(5)},

shown in Table 1.

Basic var. x1 x2 s1 s2 s3 RHS
x2 04/15-1/1510 16/3
s3 11/3-1/300 2/3
x1 0-1/154/1501 17/3

Table 1: Optimal tableau of the LP relaxation
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Example: Gomory Cuts (cont.)

The Gomory cut from the first row is

14

15
s1 +

4

15
s2 ≥

1

3
,

In terms of x1 and x2, we have

4x1 + 2x2 ≤ 33, (G-C1)
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Example: Equivalent C-G Inequality (cont.)

• Let’s derive the same inequality as a C-G inequality.

• We combine the first two inequalities from the original formulation with
weights −1/15− (−1) = 14/15 and 4/15 to get

4x1 + 2x2 ≤ 100/3.

• After rounding, this is the Gomory inequality from the previous slide.

• A Gomory inequality is always a C-G cut obtained by combining
inequalities that are binding at the optimal basic feasible solution.

– Binding constraints correspond to non-basic slack variables.
– Columns in the tableau associated with basic slack variables are unit

columns.
– This means the slack constraints get zero weight.

• Combining the binding constraint yields an inequality that is satisfied at
equality by the optimal basic feasible solution.

• We then round to get an inequality violated by that basic feasible solution.
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Trivial Strengthening

• Note the inquality can be trivially strengthened by dividing by 2.

• Since the gcd of the coefficients is 2, there are no integer points satisfying
4x1 + 2x2 = 33.

• Thus, the right-hand side can be strengthened further without removing
any integer point.

• Dividing by 2 and rounding, we get

2x1 + x2 ≤ 16,

• The following proposition states formally what is necessary to ensure the
strongest possible C-G inequality.

Proposition 1. Let S = {x ∈ Zn |
∑

j∈N ajxj ≤ b}, where aj ∈ Z
for j ∈ N , and let k = gcd{a1, . . . , an}. Then conv(S) = {x ∈
Rn |

∑
j∈N(aj/k)xj ≤ ⌊b/k⌋}.
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Example: Gomory Cuts (cont.)

The Gomory cut from the second row is

2

3
s1 +

1

3
s2 ≥

2

3
,

In terms of x1 and x2, we have

3x1 + 2x2 ≤ 27, (G-C2)
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Example: Gomory Cuts (cont.)

The Gomory cut from the third row is

4

15
s1 +

14

15
s2 ≥

2

3
,

In terms of x1 and x2, we have

x1 + 2x2 ≤ 16, (G-C3)
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Example: Gomory Cuts (cont.)

This picture shows the effect of adding all Gomory cuts in the first round.
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Connection with Dual Functions

• Recall that an inequality (π, π0) is valid for conv(S) if

π0 ≥ F (b),

where F is a dual function with respect to the optimization problem

max
x∈S

π⊤x

• When uAI ∈ Zp, uAC ≥ 0, then F (b) = ⌊ub⌋ is a dual function for

max
x∈S

π⊤x,

where π = uA.

• Thus, Chvátal inequalities can be derived directly using an argument
based on duality.
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Applying the Procedure Recursively

• This procedure can be applied recursively by adding the generated
inequalities to the formulation and performing the same steps again.

• Any inequality that can be obtained by recursive application of the C-G
procedure (or is dominated by such an inequality) is a C-G inequality.

• For pure ILPs, all valid inequalities are C-G inequalities.

Theorem 1. Let (π, π0) ∈ Zn+1 be a valid inequality for S = {x ∈
Zn
+ | Ax ≤ b} ≠ ∅. Then (π, π0) is a C-G inequality for S.

• In the next few slides, we will make these ideas more precise.
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Elementary Closure

• The elementary closure, or C-G closure, of a polyhedron P ⊆ Rn
+ is the

intersection of half-spaces defined by C-G inequalities, e.g.,

e(P) = {x ∈ P | π⊤x ≤ π0, πj = ⌊uaj⌋ for 1 ≤ j ≤ p,

πj = 0 for p+ 1 ≤ j ≤ n, π0 = ⌊ub⌋, u ∈ Rm
+}

• Although it is not obvious, one can show that the elementary closure is
a polyhedron.

• Optimizing over this polyhedron is difficult (NP-hard) in general.

• For a general polyhedron P, not necessarily contained in the non-negative
orthant, we can similarly define the Chvátal closure.

PCH = {x ∈ P | π⊤x ≤ π0, π = uA, π0 = ⌊ub⌋, uAI ∈ Zp, uAC = 0}
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Rank of C-G Inequalities

• The rank k C-G closure Pk of P is defined recursively as follows.

– The rank 1 closure of P is P1 = e(P).
– The rank k closure Pk = e(Pk−1) is the elementary closure of the

Pk−1.
– An inequality is rank k with respect to P if it is valid for the rank k

closure Pk and not for Pk−1.

• The C-G rank of P is the maximum rank of any facet-defining inequality
of conv(S) with respect to P.

• We can define a similar notion of rank with respect to the Chvátal
closure.
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A Finite Cutting Plane Procedure

• Under mild assumptions on the algorithm used to solve the LP, this yields
a general algorithm for solving (pure) ILPs.

• The details are contained in Section 5.2.5 of CCZ.
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Determining the C-G Rank

• By solving an LP, it can be determined whether a given inequality has
maximum rank 1.

Proposition 2. If (π, π0) ∈ e(P), then π0 ≥ ⌊πLP
0 ⌋, where πLP

0 =
maxx∈P π⊤x

• Alternatively, if π ∈ Zn, the inequality (π, ⌊πLP
0 ⌋) is rank 1.

• Further, any valid inequality (π, π0) for which π0 < ⌊πLP
0 ⌋ has rank at

least 2.

• This tells us that the effectiveness of the C-G procedure is strongly tied
to the strength of our original formulation.

• In general it is difficult to determine the rank of any inequality that is
not rank 1.
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Example: C-G Rank

• Let’s consider the C-G rank of the inequality

x1 + 2x2 ≤ 15,

which is facet-defining for conv(S) in our example.

• We have
max
x∈P

x1 + 2x2 = 49/3. (12)

• Since ⌊49/3⌋ = 16, we conclude that this is not a rank 1 cut.

• Note that the dual solution to the LP (12) gives us weights with which
to combine the original inequalities to get a C-G cut.

• This is the strongest possible C-G cut of rank 1 with those coefficients.
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Bounding The C-G Rank of a Polyhedron

• For most classes of MILPs, the rank of the associated polyhedron is an
unbounded function of the dimension.

• Example:

– P = {x ∈ Rn
+ | xi + xj ≤ 1 for i, j ∈ V, i ̸= j} and S = Pn ∩ Zn

– conv(S) = {x ∈ Rn
+ |

∑
j∈N xj ≤ 1}.

– rank(P) = O(log n).

• For a family of polyhedra with bounded rank, there is a certificate for
the validity of any given inequality.

• This leads to a certificate of optimality for the associated optimization
problem.

• Hence, it is unlikely that the problem of optimizing over any family of
MILPs formulated by polyhedra with bounded rank is in NP-hard2.

• Conversely, for any family of MILPs that is in NP-hard, the associated
family of polyhedra is likely to have unbounded rank.

2More on what this means later
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