
Integer Programming

Lecture 18

 2

Decomposition Methods

• Many complex models are built up from simpler structures.

– Subsystems linked by system-wide constraints or variables.
– Complex combinatorial structures obtained by combining simpler ones.
– Simple models with additional “complicating constraints.”

• Decomposition is the process of taking a model and breaking it into
smaller parts.

• The goal is either to

– reformulate the model for easier solution;
– reformulate the model to obtain an improved relaxation (bound); or
– separate the model into stages or levels (possibly with separate

objectives).

2

 3

Block Structure

• “Classical” decomposition arises from block structure in the constraint
matrix.

• By relaxing/fixing the linking variables/constraints, we then get a model
that is separable.

• A separable model consists of multiple smaller submodels that are easier
to solve.

• The separability lends itself nicely to parallel implementation.


A01 A02 · · · A0κ

A1

A2
. . .

Aκκ



A10 A11

A20 A22
... . . .

Aγ0 Aκκ



3

 4

The Decomposition Principle

• Decomposition methods leverage our ability to solve either a relaxation
or a restriction.

• Methodology is based on the ability to solve a given subproblem
repeatedly with varying inputs.

• The goal of solving the subproblem repeatedly is to obtain information
about its structure that can be incorporated into a master problem.

• At a high level, most solution methods for discrete optimization problems
are based on the decomposition principle.

• Constraint decomposition

– Relax a set of complicating constraints to obtain a more tractable
problem.

– Leverages ability to solve either the optimization or separation problem
for the relaxation (with varying objectives and/or points to be
separated).

• Variable decomposition

– Fix the values of complicating variables to expose the structure.
– Leverages ability to solve a restriction (with varying right-hand sides).

4

 5

Example: Block Structure (Linking Constraints)

Generalized Assignment Problem (GAP)

max
∑
i∈M

∑
j∈N

pijxij∑
j∈N

wijxij ≤ bi ∀i ∈ M∑
i∈M

xij 1= ∀j ∈ N

xij {∈ 0, 1 ∀} i, j ∈ M ×N

• The problem is to assign m tasks to n machines subject to capacity
constraints.

• The variable xij is one if task i is assigned to machine j.

• The profit associated with assigning task i to machine j is pij.

• If we relax the requirement that each task be assigned to only one
machine, the problem decomposes into n knapsack problems.

5

 6

Example: Block Structure (Linking Variables)

Facility Location Problem

min
n∑

j=1

cjyj +
m∑
i=1

n∑
j=1

pijxij

s.t.

n∑
j=1

xij = 1 ∀i

xij ≤ yj ∀i, j
xij, yj ∈ {0, 1 ∀} i, j

• We are given n facility locations and m customers to be serviced from
those locations.

• There is a fixed cost cj associated with facility j.

• There is a profit dij associated with serving customer i from facility j.

• We have two sets of binary variables.

– yj is 1 if facility j is opened, 0 otherwise.
– xij is 1 if customer i is served by facility j, 0 otherwise.

• If we fix the set of open facilities, then the problem becomes easy.

6

 7

Constraint Decomposition

• We focus for now on constraint decomposition.

• For simplicity, we consider a pure integer optimization problem (ILP)
defined as usual by

zIP = max{c⊤x | x ∈ S}, (ILP)

S = {x ∈ Zn
+ | Ax ≤ b}.

• We will exploit the ability to solve a relaxation of this problem to generate
an improved relaxation.

7

 8

Notation

We divide the constraints into two set and use the following notation to
refer to various relaxations of the original feasible region.

max c⊤x

s.t. A′x ≤ b′ (the “nice” constraints)

A′′x ≤ b′′ (the “complicating” constraints)

x ∈ Zn

(MILP-D)

Q′ = {x ∈ Rn | A′x ≤ b′},
Q′′ = {x ∈ Rn | A′′x ≤ b′′},
Q = Q′ ∩Q′′,

S = Q∩ Zn, and

SR = Q′ ∩ Zn.

8

 9

The Decomposition Bound

By exploiting our knowledge of conv(SR), we wish to compute the so-called
decomposition bound by partial convexification.

zIP = max
x∈Zn

{
c⊤x | A′x ≤ b′, A′′x ≤ b′′

}
zLP max=

x∈Rn

{
c⊤x | A′x ≤ b′, A′′x ≤ b′′

}
zD max=

x∈conv(SR)

{
c⊤x | A′′x ≤ b′′

}
zIP ≤ zD ≤ zLP

This bound can be computed using three different basic approaches:

• Lagrangian relaxation (dynamic generation of extreme points of
conv(SR))

• Dantzig-Wolfe decomposition (dynamic generation of extreme points of
conv(SR))

• Cutting plane method (dynamic generation of facets of conv(SR)).

9

 10

Example

min x1

−x1 − x2 ≥ −8, (1)

−0.4x1 + x2 ≥ 0.3, (2)

x1 + x2 ≥ 4.5, (3)

3x1 + x2 ≥ 9.5, (4)

0.25x1 − x2 ≥ −3, (5)

7x1 − x2 ≥ 13, (6)

x2 ≥ 1, (7)

−x1 + x2 ≥ −3, (8)

−4x1 − x2 ≥ −27, (9)

−x2 ≥ −5, (10)

0.2x1 − x2 ≥ −4, (11)

x ∈ Z′′. (12)

10

 11

Example (cont)

Q′ = {x ∈ R2 | x satisfies (1)− (5)},
Q′′ = {x ∈ R2 | x satisfies (6)− (11)},
Q = Q′ ∩Q′′,

S = Q∩ Zn, and

SR = Q′ ∩ Zn.

11

 12

Constraint Decomposition in Integer Programming

• Optimization over S is “hard”

• Optimization over SR is “easy”

• We can generate extreme points and/or facet-defining inequalities of
conv(SR) ”effectively.”

12

 13

Constraint Decomposition in Integer Programming

• Optimization over S is “hard”

• Optimization over SR is “easy”

• We can generate extreme points and/or facet-defining inequalities of
conv(SR) “effectively.”

13

 14

The Strength of the Decomposition Bound

• We have
zD = max{c⊤x | A′′x ≤ b′′, x ∈ conv(SR)}

• From this, we can characterize exactly when the decomposition bound is
strong and when it is weak.

Proposition 1. zD = zIP for all objective functions if and only if

conv{SR ∩ {x ∈ Rn
+ | A′′x ≤ b′′}} = conv(SR) ∩ {x ∈ Rn

+ | A′′x ≤ b′′}

Proposition 2. zD = zLP for all objective functions if and only if

Q′ = conv(SR)

14

 15

Illustrating the Strength of the Decomposition Bound

15

 16

Comparing the Decomposition Bound to the LP Bound

• The following proposition follows again from the characterization of zD.

Proposition 3. The LP and the decomposition bound are exactly the
same for all objective functions if {x ∈ Rn

+ | A′x ≤ b′} is an integral
polyhedron.

• This follows from the fact that conv(SR) = {x ∈ Rn
+ | A′x ≤ b′} in this

case.

• Because of the equivalence of optimization and separation, we can in
theory always attain this bound using a cutting plane algorithm.

• Incorporating cutting plane methods in with the bounding methods we
have discussed so far is a topic for later in the course.

16

