Integer Programming

Lecture 18



Decomposition Methods

e Many complex models are built up from simpler structures.

— Subsystems linked by system-wide constraints or variables.
— Complex combinatorial structures obtained by combining simpler ones.
— Simple models with additional “complicating constraints.”

e Decomposition is the process of taking a model and breaking it into
smaller parts.

e The goal is either to

— reformulate the model for easier solution:

— reformulate the model to obtain an improved relaxation (bound); or

— separate the model into stages or levels (possibly with separate
objectives).



Block Structure

“Classical” decomposition arises from block structure in the constraint
matrix.

By relaxing /fixing the linking variables/constraints, we then get a model
that is separable.

A separable model consists of multiple smaller submodels that are easier
to solve.

The separability lends itself nicely to parallel implementation.
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The Decomposition Principle

Decomposition methods leverage our ability to solve either a relaxation
or a restriction.

Methodology is based on the ability to solve a given subproblem
repeatedly with varying inputs.

The goal of solving the subproblem repeatedly is to obtain information
about its structure that can be incorporated into a master problem.

At a high level, most solution methods for discrete optimization problems
are based on the decomposition principle.

Constraint decomposition

— Relax a set of complicating constraints to obtain a more tractable
problem.

— Leverages ability to solve either the optimization or separation problem
for the relaxation (with varying objectives and/or points to be
separated).

Variable decomposition

— Fix the values of complicating variables to expose the structure.
— Leverages ability to solve a restriction (with varying right-hand sides).



Example: Block Structure (Linking Constraints)
Generalized Assignment Problem (GAP)
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e The problem is to assign m tasks to n machines subject to capacity
constraints.

e The variable z;; is one if task ¢ is assigned to machine j.
e The profit associated with assigning task i to machine j is p;;.

o If we relax the requirement that each task be assigned to only one
machine, the problem decomposes into n knapsack problems.



Example: Block Structure (Linking Variables)

Facility Location Problem
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e We are given n facility locations and m customers to be serviced from
those locations.

e There is a fixed cost c; associated with facility j.
e There is a profit d;; associated with serving customer 7 from facility j.
e \We have two sets of binary variables.

— y; is 1 if facility j is opened, O otherwise.
— x;; is 1 if customer ¢ is served by facility j, 0 otherwise.

o |f we fix the set of open facilities, then the problem becomes easy.



Constraint Decomposition

e We focus for now on constraint decomposition.

e For simplicity, we consider a pure integer optimization problem (ILP)
defined as usual by

zip =max{c x|z € S}, (ILP)
S={xecZ | Az < b}.

e We will exploit the ability to solve a relaxation of this problem to generate
an improved relaxation.



Notation

We divide the constraints into two set and use the following notation to
refer to various relaxations of the original feasible region.

-

max ¢ x
s.t. A’z < b (the “nice” constraints) (MILP-D)
A"z <b" (the “complicating” constraints)
xr € "

Q = {zeR"|Az<b},

Q" = {zeR"| A"z <V},

Q = Qo'nQ”

S = 9NZ" and

Sp = QlﬂZn.



The Decomposition Bound

By exploiting our knowledge of conv(Sg), we wish to compute the so-called
decomposition bound by partial convexification.

2ip = max{cTa:\A’ang’,A”xgb”}
TEL™

2ip = max{ch\A’xgb’,A”be”}
xR

2p = max {c'z | A"z <V}
x€conv(SR)

zip < Z2p < ZLp
This bound can be computed using three different basic approaches:

e Lagrangian relaxation (dynamic generation of extreme points of

conv(SR))

e Dantzig-Wolfe decomposition (dynamic generation of extreme points of

conv(Sg))

e Cutting plane method (dynamic generation of facets of conv(Sg)).
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Example
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Example (cont)

{x € R? | x satisfies (1) — (5)},
{x € R? | z satisfies (6) — (11)},
Ql m Q//

ONZ", and

Q' 'nz".
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Constraint Decomposition in Integer Programming
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................. Q' ={xz R | Alz < b’}

------- Q" ={xz eR™ | Az <V}
e Optimization over S is “hard”

e Optimization over Sg is “easy”

e We can generate extreme points and/or facet-defining inequalities of
conv(Sg) " effectively.”
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Constraint Decomposition in Integer Programming

conv(S) = conv{x € Z"™ | Az < b/, A2 < b/}
conv(Sp) = conv{z € Z" | Alz < b’}
----------------- Q' ={xz e R | Alz < b}

....... Q" ={xz eR™ | Az < b}

e Optimization over S is “hard”
e Optimization over Sg is “easy”

e We can generate extreme points and/or facet-defining inequalities of
conv(Sg) “effectively.”
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The Strength of the Decomposition Bound

e We have
Zp = max{cTaj ’ Az < b//,ZIZ‘ < CODV(SR)}

e From this, we can characterize exactly when the decomposition bound is
strong and when it is weak.

Proposition 1. zp = z;p for all objective functions if and only if

conv{SpN{r € R} | A"z <V"}} = conv(Sg) N{z e R} | A"z <b"}

Proposition 2. zp = z;, p for all objective functions if and only if

Q' = conv(SR)
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lllustrating the Strength of the Decomposition Bound
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Comparing the Decomposition Bound to the LP Bound

e The following proposition follows again from the characterization of zp.

Proposition 3. The LP and the decomposition bound are exactly the
same for all objective functions if {x € RT | A'x < b'} is an integral
polyhedron.

e This follows from the fact that conv(Sg) = {z € R} | A’z < b’} in this
case.

e Because of the equivalence of optimization and separation, we can in
theory always attain this bound using a cutting plane algorithm.

e Incorporating cutting plane methods in with the bounding methods we
have discussed so far is a topic for later in the course.



