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Formulations and Models

• Our description in the last lecture boiled the modeling process down to
two basic steps.

1. Create a conceptual model of the real-world problem.
2. Translate the conceptual model into a formulation.

• In the conceptual model, we identify the variables and what values of we
would like to allow in logical/conceptual terms.

• In the formulation, we specify constraints that ensure the feasible
solutions to the resulting mathematical optimization problem are indeed
“feasible” in terms of the conceptual model.

• Integer (and other) variables that don’t appear in the conceptual model
may be introduced to enforce logical conditions (disjunction).

• We also try to account for “solvability.”

• We may have to prove formally that the resulting formulation does in
fact correspond to the model (and eventually to the real-world problem).
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Valid Formulation

• Suppose F ⊆ Zp
+ × Rn−p

+ is a set describing the solutions to our
conceptual model.

• Then

S =
{
(x, y) ∈ (Zp × Rn−p

+ )× (Zt
+ × Rr−t

+ ) | Ax+Gy ≤ b
}

is a valid (linear) formulation if F = projx(S), where A ∈ Qm×n, G ∈
Qr×n, b ∈ Qm are chosen appropriately.

• The formulation may have auxiliary variables that are not in the
conceptual model (we will see an example later in the lecture).

• In fact, the variables from the conceptual model may not even be
explicitly needed if their values can be computed later.

• This definition addresses only feasibility and does not address formal
equivalence of the formulation and the original optimization problem.

• To prove such equivalence, we need also consider the objective function
and may need to invoke the concept of reduction, introduced later.
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Alternative Formulations

• A typical mathematical model may have many valid formulations.

• In this class, we focus on problems that have linear formulations
(naturally, not every problem does).

• We will see that the specific formulation we choose can have a big impact
on the efficiency of the solution method.

• Finding a “good” formulation is critical to solving a given linear model
efficiently and is a good deal of what this course is about.

• The existence of alternative formulations and the question of how to
choose between them will be an implicit theme throughout the course.

• In fact, most algorithms for solving optimization problems can be seen
as methods for iteratively reformulating.
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Notation and Terminology

• For most parts of the course, we’ll assume the formulation is given and
won’t consider the original conceptual model.

• We may informally refer to the feasible region of the LP relaxation as
“the formulation.”

• Later we’ll discuss mathematical formalities involved in describing
optimization problems.

• For ease of notation, we won’t distinguish between the original structural
variables and the additional auxiliary variables.

5



 6

Proving Validity

• There are two parts to proving a formulation is valid, although one or
both of these may be “obvious” in some cases.

– First, we have to prove that F is in fact the set of solutions to the
original problem, which may have been described non-mathematically.

– Second, we have to prove our formulation is correct.

• In the first step, we need to identify a mapping between the real-world
system and the set F .

• Proving validity of a given formulation often means proving F =
projx(S).

• The most straightforward way of doing this involves proving

– x ∈ F ⇒ x ∈ projx(S), and
– x ∈ projx(S) ⇒ x ∈ F .

• Note also that we may need to separately prove that the chosen objective
properly ranks the solutions according to our evaluation in the real world.

6



 7

Problem Reduction

• The process of modeling and formulation involves multiple translations
from one formal (or informal) language into another.

• Each of these steps involves what is called reduction, a type of procedure
that we will study in more detail later in the course.

• Informally, reducing problem A to problem B involves deriving

– a mapping of each “instance” of problem A to an “instance” of
problem B, and

– a mapping of a solution to problem B to a solution to problem A

• If problem A can be reduced to problem B in this way, we can solve an
instance of problem A by

1. Mapping the instance of problem A to an instance of problem B;
2. Solving the instance of problem B; and then
3. Mapping the solution we obtain back to a solution of problem A.

• Note that for an optimization problem, reduction only requires that an
optimal solution of B maps to an optimal solution of A.

• There may be solutions to B that do not map to solutions of A, but also
can never be optimal.
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Efficient  Reduction

• The  way  reduction  was  informally  described  on  the  previous  slide  did  not 
account  for  the  difficulty  of  doing  the  mapping.

• In  general,  for  a  reduction  to  be  useful,  the  mappings  should  be  “easy”
to  compute.

• We  usually  define  this  to  mean  that  the  number  of  steps  required  is 
polynomial  in  the  “size”  of  the  input.

• Hence,  the  description  of  the  instance  of  problem  B  cannot  be  more  than 
a  polynomial  factor  larger  than  the  input  of  the  instance  of  problem  A.

• We’ll  define  this  notion  of  “efficiency”  more  formally  laster  in  the  
course.

• Also  note  that  we  required  that  problem  A  be  solved  by  one  call  to  the 
algorithm  for  problem  B.

• In  general,  notions  of  reduction  exist  in  which  multiple  instances  of 
problem  B  may  be  used  to  solve  problem  A.

• In  this  more  general  notion  of  reduction,  we  put  a  similar  limit  on  both 
the  size  and  number  of  instances  of  problem  B  to  be  solved.
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Problem Reduction and Modeling

• Note that reduction does not require us to identify a problem that is
equivalent to our original problem.

• Problems A and B may not be equivalent, since we don’t require that
every instance of problem B corresponds to an instance of problem A.

• The goal is to exploit an algorithm for problem B to solve problem A.

• Modeling of a general optimization problem involves reducing that model
to optimization over a set F .

• Proving validity of a formulation amounts to showing that optimization
over F can be reduced to mathematical optimization.

• We may also do reductions from one mathematical optimization problem
to another in some cases.

• These reductions may involve problems defined over completely different
sets of variables.
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Formulations with Integer Variables

• From a practical standpoint, what is the purpose of integer variables?
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Formulations with Integer Variables

• From a practical standpoint, what is the purpose of integer variables?

• We have seen in the last lecture that integer variable essentially allow us
to introduce disjunctive logic

• If the variable is associated with a physical entity that is indivisible, then
the value must be integer.

– Product mix problem.
– Cutting stock problem.

• At its heart, integrality is a kind of disjunctive constraint.

• 0-1 (binary) variables are often used to formulate more abstract kinds of
disjunctions (non-numerical).

– Formulating yes/no decisions.
– Enforcing logical conditions.
– Formulating fixed costs.
– Formulating piecewise linear functions.
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s.t. wjxj ≤K

x ∈ {0, 1}n
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Formulating  Binary  Choice

• We  use  binary  variables  to  formulate  yes/no  decisions.

• Example:  Integer  knapsack  problem

– We  are  given  a  set  of  items  with  associated  values  and  weights.
– We  wish  to  select  a  subset  of  maximum  value  such  that  the  total 

weight  is  less  than  a  constant  K  .
– We  associate  a  0-1  variable  with  each  item  indicating  whether  it  is 

selected  or  not.

max  
n∑  
cj  xj

j=1

n∑
j=1
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Formulating Dependent Decisions

• We can also use binary variables to enforce the condition that a certain
action can only be taken if some other action is also taken.

• Suppose x and y are binary variables representing whether or not to take
certain actions.

• The constraint x ≤ y says “only take action x if action y is also taken”.
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Example: Facility Location Problem

• We are given n potential facility locations and m customers.

• There is a fixed cost cj of opening facility j.

• There is a cost dij associated with serving customer i from facility j.

• We have two sets of binary variables.

– yj is 1 if facility j is opened, 0 otherwise.
– xij is 1 if customer i is served by facility j, 0 otherwise.

• Here is one formulation:

min
n∑

j=1

cjyj +
m∑
i=1

n∑
j=1

dijxij

s.t.
n∑

j=1

xij = 1 ∀i

m∑
i=1

xij ≤ myj ∀j

xij, yj ∈ {0, 1 ∀} i, j
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Selecting from a Set

• We can use constraints of the form
∑

j∈T xj ≥ 1 to represent that at
least one item should be chosen from a set T .

• Similarly, we can also formulate that at most one or exactly one item
should be chosen.

• Example: Set covering problem

– A set covering problem is any problem of the form

min c⊤x

s.t. Ax ≥ 1

xj ∈ {0, 1} ∀j
where A is a 0-1 matrix.

– Each row of A represents an item from a set S.
– Each column Aj represents a subset Sj of the items.
– Each variable xj represents selecting subset Sj.
– The constraints say that ∪{j|xj=1}Sj = S.
– In other words, each item must appear in at least one selected subset.
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Formulating Disjunctive Constraints

• We are given two constraints a⊤x ≥ b and c⊤x ≥ d with non-negative
coefficients.

• Instead of insisting both constraints be satisfied, we want at least one of
the two constraints to be satisfied.

• To formulate this, we define a binary variable y and impose

a⊤x ≥ yb,

c⊤x ≥ (1− y)d,

y ∈ {0, 1},
x ∈ Z+

• More generally, we can impose that at least k out of m constraints be
satisfied with

(a′i)
⊤x≥ biyi, i ∈ [1..m]

m∑
i=1

yi ≥ k,

yi ∈ {0, 1},
x ∈ Z+
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Formulating a Restricted Set of Values

• We may want variable x to only take on values in the set {a1, . . . , am}.

• We introduce m binary variables yj, j = 1, . . . ,m and the constraints

x =
m∑
j=1

ajyj,

m∑
j=1

yj = 1,

yj ∈ {0, 1}
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Piecewise Linear Cost Functions

• We can use binary variables to formulate arbitrary piecewise linear cost
functions.

• The function is specified by ordered pairs (ai, f(ai)) and we wish to
evaluate it at a point x.

• We have a binary variable yi, which indicates whether ai ≤ x ≤ ai+1.

• To evaluate the function, we take linear combinations
∑k

i=1 λif(ai) of
the given functions values.

• This only works if the only two nonzero λ′
is are the ones corresponding

to the endpoints of the interval in which x lies.
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Minimizing Piecewise Linear Cost Functions

• The following formulation minimizes the function.

min
k∑

i=1

λif(ai)

s.t.
k∑

i=1

λi = 1,

λ1 ≤ y1,

λi ≤ yi−1 + yi i, ∈ [2..k − 1],

λk ≤ yk−1,
k−1∑
i=1

yi = 1,

λi ≥ 0,

yi ∈ {0, 1}.

• The key is that if yj = 1, then λi = 0, ∀i ̸= j, j + 1.
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Formulating General Nonconvex Functions

• One way of dealing with general nonconvexity is by dividing the domain
of a nonconvex function into regions over which it is convex (or concave).

• We can do this using integer variables to choose the region.

• This is precisely what is done in the case of the piecewise linear cost
function above.

• Most methods of general global optimization use some form of this
approach.
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Fixed-charge Problems

• In many instances, there is a fixed cost and a variable cost associated
with a particular decision.

• Example: Fixed-charge Network Flow Problem

– We are given a directed graph G = (N,A).
– There is a fixed cost cij associated with “opening” arc (i, j) (think of

this as the cost to “build” the link).
– There is also a variable cost dij associated with each unit of flow along

arc (i, j).
– Consider an instance with a single supply node.
∗ Minimizing the fixed cost by itself is a minimum spanning tree
problem (easy).

∗ Minimizing the variable cost by itself is a minimum cost network
flow problem (easy).

∗ We want to minimize the sum of these two costs (difficult).
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Formulating the Fixed-charge Network Flow Problem

• To formulate the FCNFP, we associate two variables with each arc.

– xij (fixed-charge variable) indicates whether arc (i, j) is open.
– fij (flow variable) represents the flow on arc (i, j).
– Note that we have to ensure that fij > 0 ⇒ xij = 1.

min
∑

(i,j)∈A

cijxij + dijfij

s.t.
∑

j∈O(i)

fij −
∑

j∈I(i)

fji = bi ∀i ∈ N

fij ≤Cxij ∀(i, j) ∈ A

fij ≥ 0 ∀(i, j) ∈ A

xij ∈ {0, 1} ∀(i, j) ∈ A
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