
Integer Programming

Lecture 20

 1

Variable Decomposition

• Recall the basic principle of decomposition: by relaxing/fixing the linking
variables/constraints, we then get a model that is easier to solve.

• Here, we discuss methods of decomposing by fixing complicating
variables.

• “Classical” decomposition arises from block structure in the constraint
matrix.

A10 A11

A20 A22
... . . .

Aγ0 Aκκ



• After fixing variables the problem becomes separable and the separability
lends itself nicely to parallel implementation.

• However, there can be other reasons why problems become easier to
solve upon fixing certain variables.

1

 2

(Generalized) Benders’ Decomposition

• Most of what we’re referring to as variable decomposition methods are
derivatives of an algorithm proposed by Benders.

• Benders’ original method was for the case of LPs, but the algorithm is
easy to generalize.

• From a mathematical standpoint, Benders’ method amounts to projection
of the problem into the space of a subset of the variables.

• The projection effectively amounts to a reformulation of the problem in
terms of the value function of a restriction of the problem.

2

 3

Benders’ Principle (Linear Programming)

zLP max=
(x,y)∈Rn

{cx+ dy | Ax ≤ b,Dx+Gy ≤ d}

max=
x∈Rn′

{cx+ ϕ(d−Dx) | Ax ≤ b} ,

y ∈ Rn′′

Basic Strategy:

• The function ϕ is the value function of a linear program.

• We iteratively approximate it by generating dual functions.

3

where
ϕ(β) = max dy

s.t. Gy ≤ β

 4

Example

zLP max= x− y

s.t. −25x+ 20y ≤ 30

x+ 2y ≤ 10

2x− y ≤ 15

−2x− 10y ≤ −15

x ∈ [0, 10]

y ∈ [0, 5]

5

1 2 3 4 5 6 7 8

1

2

3

4

x

y

4

 5

Value Function Reformulation

zLP max=
0≤x≤10

x+ ϕx(x),

where

ϕx(x max=) −y

20s.t. y ≤ 30 + 25x

2y ≤ 10− x

−y ≤ 15− 2x

−10y ≤ −15 + 2x

y ∈ [0, 5]

1 2 3 4 5 6 7 8

1

2

3

4

5

x

y

ϕx(x)

• Note that ϕx(x) = ϕ(d−Dx) and is not the value function itself.

• Also, it only coincides with the boundary of the feasible region because
of the specific objective funcion in this case.

• The reformulated problem can be interpreted precisely as the projection
into the space of the first set of variables.

5

 6

Generalized Benders

Benders’ Master Problem (iteration k)

max cx+ z

subject to Ax ≤ b

z ≤ ϕi(d−Dx), 1 ≤ i ≤ k

x ∈ Zn′

Basic Scheme

• Solve master problem to obtain new candidate solution xk and lower
bound.

• Solve subproblem by evaluating ϕ(d−Dxk) to obtain ϕk (dual function
and new upper bound.

• Terminate when upper bound equals lower bound.

Where do we get ϕk?

6

 7

Benders Optimality Cuts

• ϕk is a dual function that we construct by evaluating ϕ(d−Dxk).

• The dual functions arising in each iteration are combined into a global
dual function through the constraints on z.

• Each evaluation of ϕ yields information that we can use to build up this
overall global approximation.

• In the LP case, the dual functions are linear functions that arise as the
dual solutions to the subproblems.

• The constraint z ≤ ϕi(d − Dx) added in iteration i reduce to z ≤
ui⊤(d−Dx), where ui is the dual solution to the subproblem.

• These are linear inequalities and Benders can hence be seen as a cutting
plane method in this case.

7

 8

Benders Feasibility Cuts

• Note that it can happen that the subproblem is infeasible.

• This is accounted for in the general algorithm by the fact that the value
function is defined over the extended reals.

• We define ϕx(x) = −∞ when there is no y such that Gy ≤ d−Dx.

• In the master problem we are disallowing x such that ϕx(x) = −∞.

• In practical computations, we need constraints to enforce this.

• In the LP case, when ϕx(x) = −∞, then the proof of infeasibility is a
ray r of the dual feasible region that proves unboundedness.

• In other words, the proof is a dual ray r such that r⊤(d−Dx) < 0.

• Thus, we can disallow this value of x in the master by adding the
constraint r⊤(d−Dx) ≥ 0.

• In the LP case, such constraints are the so-called Benders’ feasibility cuts
(in contrast to Benders’ optimality cuts of the previous slide).

8

 9

An LP Example

max x− y

s.t. −25x+ 20y ≤ 30

x+ 2y ≤ 10

2x− y ≤ 15

−2x− 10y ≤ −15

x ∈ [0, 10]

y ∈ [0, 5]

Master problem:

max x+ z

s.t. z ≤ ϕ
k

x(x)

x ∈ [0, 10]

z free

Subproblem:

ϕx(x
k) =max −y

20s.t. y ≤ 30 + 25xk (1)

2y ≤ 10− xk (2)

−y ≤ 15− 2xk (3)

−10y ≤ −15 + 2xk (4)

y ∈ [0, 5]

9

 10

An LP Example (cont’d)

• In the first iteration, we have no Benders cuts and hence, we get the
solution x1 = 10.

• The subproblem is infeasible because (2) becomes y ≤ 0 and (3) becomes
y ≥ 5, which are in conflict.

• The vector r = [0, 1, 2, 0] is a ray (20r1 + 2r2 − r3 − 10r4 = 0) and has
dual objective value 280r1 − 5r3 + 5r4 = −10.

• This translates to a feasibility cut 1(10− x) + 2(15− 2x) = 8− x ≥ 0.

• Thus, in the second iteration, we have x2 = 8 and uk = [0, 0, 1, 0].

• As such, the feasibility cut is z ≤ 15− 2x.

• This is equivalent to adding constraint (3) and so in the next iteration,
we have x3 = 7.5.

• Solving the subproblem, we determine that the lower bound and upper
bound are equal, so we are finished and the optimal solution is (7.5, 0).

10

 11

Benders’ Principle (Integer Programming)

zLP max=
(x,y)∈Zn

{cx+ dy | Ax ≤ b,Dx+Gy ≤ d}

max=
x∈Zn′

{cx+ ϕ(d−Dx)|Ax ≤ b} ,

y ∈ Zn′′

Basic Strategy:

• Here, ϕ is the value function of an integer program.

• Here, we also iteratively generate an approximation by constructing a
dual functions.

11

where
ϕ(β) = max dy

s.t. Gy ≤ β

 12

Example

zIP max= −x− y

s.t. −25x+ 20y ≤ 30

x+ 2y ≤ 10

2x− y ≤ 15

−2x− 10y ≤ −15

x, y ∈ Z

5

1 2 3 4 5 6 7 8

1

2

3

4

x

y

12

 13

Value Function Reformulation

zIP max= x∈Z−x+ ϕ(x),

where

ϕx(x max=) −y

20s.t. y ≤ 30 + 25x

2y ≤ 10− x

−y ≤ 15− 2x

−10y ≤ −15 + 2x

y ∈ Z 1 2 3 4 5 6 7 8

1

2

3

4

5
ϕx(x)

x

y

• Note again that ϕx(x) = ϕ(d − Dx) and so is not the value function
itself.

13

 14

An MILP Example

min −x1 + y1 + y2 + y3

s.t. −x1 + 2y1 − y2 + y3 = 0

x1 ∈ [0, 3]

x1, y1 ∈ Z+

y2, y3 ∈ R+

Master problem:

min −x1 + θ

s.t. θ ≥ ϕ(x1)

x1 ∈ [0, 3]

x1 ∈ Z+

θ free

Subproblem (β = x1):

ϕ(β) =min y1 + y2 + y3

s.t. 2y1 − y2 + y3 = β

y1 ∈ Z+

y2, y3 ∈ R+

14

 15

An MILP Example

Subproblem:

ϕ(β) =min y1 + y2 + y3

s.t. 2y1 − y2 + y3 = β

y1 ∈ Z+

y2, y3 ∈ R+

15

 16

Example

Iteration 1:

min −x1

s.t. x1 ∈ [0, 3]

x1 ∈ Z+

x1
1 = 3, θ1 = −∞

ϕ(β = x1
1) =min y1 + y2 + y3

s.t. 2y1 − y2 + y3 = 3

y1 ∈ Z+

y2, y3 ∈ R+

16

 17

Example

Iteration 2:

min −x1 + θ

s.t. θ ≥ min{x1 − 1,−x1 + 6}
x1 ∈ [0, 3]

x1 ∈ Z+

x2
1 = 0, θ2 = −1

ϕ(β = x2
1) =min y1 + y2 + y3

s.t. 2y1 − y2 + y3 = 0

y1 ∈ Z+

y2, y3 ∈ R+

17

 18

Example

Iteration 3:

min −x1 + θ

s.t. θ ≥ min{x1 − 1,−x1 + 6}
θ ≥ −x1

x1 ∈ [0, 3]

x1 ∈ Z+

x3
1 = 1, θ3 = 0

ϕ(β = x3
1) =min y1 + y2 + y3

s.t. 2y1 − y2 + y3 = 1

y1 ∈ Z+

y2, y3 ∈ R+

18

 19

Example

Iteration 4:

min −x1 + θ

s.t. θ ≥ min{x1 − 1,−x1 + 6}
θ ≥ −x1

θ ≥ min{x1,−x1 + 3}
x1 ∈ [0, 3]

x1 ∈ Z+

x4
1 = 3, θ4 = 2

ϕ(β = x4
1) =min y1 + y2 + y3

s.t. 2y1 − y2 + y3 = 3

y1 ∈ Z+

y2, y3 ∈ R+

19

