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Variable Decomposition

• Recall the basic principle of decomposition: by relaxing/fixing the linking
variables/constraints, we then get a model that is easier to solve.

• Here, we discuss methods of decomposing by fixing complicating
variables.

• “Classical” decomposition arises from block structure in the constraint
matrix.

A10 A11

A20 A22
... . . .

Aγ0 Aκκ



• After fixing variables the problem becomes separable and the separability
lends itself nicely to parallel implementation.

• However, there can be other reasons why problems become easier to
solve upon fixing certain variables.
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(Generalized) Benders’ Decomposition

• Most of what we’re referring to as variable decomposition methods are
derivatives of an algorithm proposed by Benders.

• Benders’ original method was for the case of LPs, but the algorithm is
easy to generalize.

• From a mathematical standpoint, Benders’ method amounts to projection
of the problem into the space of a subset of the variables.

• The projection effectively amounts to a reformulation of the problem in
terms of the value function of a restriction of the problem.
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Benders’ Principle (Linear Programming)

zLP max=
(x,y)∈Rn

{cx+ dy | Ax ≤ b,Dx+Gy ≤ d}

max=
x∈Rn′

{cx+ ϕ(d−Dx) | Ax ≤ b} ,

y ∈ Rn′′

Basic Strategy:

• The function ϕ is the value function of a linear program.

• We iteratively approximate it by generating dual functions.
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where
ϕ(β  )  =  max  dy

s.t.  Gy  ≤  β
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Example

zLP max= x− y

s.t. −25x+ 20y ≤ 30

x+ 2y ≤ 10

2x− y ≤ 15

−2x− 10y ≤ −15

x ∈ [0, 10]

y ∈ [0, 5]
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Value Function Reformulation

zLP max=
0≤x≤10

x+ ϕx(x),

where

ϕx(x max=) −y

20s.t. y ≤ 30 + 25x

2y ≤ 10− x

−y ≤ 15− 2x

−10y ≤ −15 + 2x

y ∈ [0, 5]
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• Note that ϕx(x) = ϕ(d−Dx) and is not the value function itself.

• Also, it only coincides with the boundary of the feasible region because
of the specific objective funcion in this case.

• The reformulated problem can be interpreted precisely as the projection
into the space of the first set of variables.
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Generalized Benders

Benders’ Master Problem (iteration k)

max cx+ z

subject to Ax ≤ b

z ≤ ϕi(d−Dx), 1 ≤ i ≤ k

x ∈ Zn′

Basic Scheme

• Solve master problem to obtain new candidate solution xk and lower
bound.

• Solve subproblem by evaluating ϕ(d−Dxk) to obtain ϕk (dual function
and new upper bound.

• Terminate when upper bound equals lower bound.

Where do we get ϕk?
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Benders Optimality Cuts

• ϕk is a dual function that we construct by evaluating ϕ(d−Dxk).

• The dual functions arising in each iteration are combined into a global
dual function through the constraints on z.

• Each evaluation of ϕ yields information that we can use to build up this
overall global approximation.

• In the LP case, the dual functions are linear functions that arise as the
dual solutions to the subproblems.

• The constraint z ≤ ϕi(d − Dx) added in iteration i reduce to z ≤
ui⊤(d−Dx), where ui is the dual solution to the subproblem.

• These are linear inequalities and Benders can hence be seen as a cutting
plane method in this case.
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Benders Feasibility Cuts

• Note that it can happen that the subproblem is infeasible.

• This is accounted for in the general algorithm by the fact that the value
function is defined over the extended reals.

• We define ϕx(x) = −∞ when there is no y such that Gy ≤ d−Dx.

• In the master problem we are disallowing x such that ϕx(x) = −∞.

• In practical computations, we need constraints to enforce this.

• In the LP case, when ϕx(x) = −∞, then the proof of infeasibility is a
ray r of the dual feasible region that proves unboundedness.

• In other words, the proof is a dual ray r such that r⊤(d−Dx) < 0.

• Thus, we can disallow this value of x in the master by adding the
constraint r⊤(d−Dx) ≥ 0.

• In the LP case, such constraints are the so-called Benders’ feasibility cuts
(in contrast to Benders’ optimality cuts of the previous slide).
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An LP Example

max x− y

s.t. −25x+ 20y ≤ 30

x+ 2y ≤ 10

2x− y ≤ 15

−2x− 10y ≤ −15

x ∈ [0, 10]

y ∈ [0, 5]

Master problem:

max x+ z

s.t. z ≤ ϕ
k

x(x)

x ∈ [0, 10]

z free

Subproblem:

ϕx(x
k) =max −y

20s.t. y ≤ 30 + 25xk (1)

2y ≤ 10− xk (2)

−y ≤ 15− 2xk (3)

−10y ≤ −15 + 2xk (4)

y ∈ [0, 5]
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An LP Example (cont’d)

• In the first iteration, we have no Benders cuts and hence, we get the
solution x1 = 10.

• The subproblem is infeasible because (2) becomes y ≤ 0 and (3) becomes
y ≥ 5, which are in conflict.

• The vector r = [0, 1, 2, 0] is a ray (20r1 + 2r2 − r3 − 10r4 = 0) and has
dual objective value 280r1 − 5r3 + 5r4 = −10.

• This translates to a feasibility cut 1(10− x) + 2(15− 2x) = 8− x ≥ 0.

• Thus, in the second iteration, we have x2 = 8 and uk = [0, 0, 1, 0].

• As such, the feasibility cut is z ≤ 15− 2x.

• This is equivalent to adding constraint (3) and so in the next iteration,
we have x3 = 7.5.

• Solving the subproblem, we determine that the lower bound and upper
bound are equal, so we are finished and the optimal solution is (7.5, 0).
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Benders’ Principle (Integer Programming)

zLP max=
(x,y)∈Zn

{cx+ dy | Ax ≤ b,Dx+Gy ≤ d}

max=
x∈Zn′

{cx+ ϕ(d−Dx)|Ax ≤ b} ,

y ∈ Zn′′

Basic Strategy:

• Here, ϕ is the value function of an integer program.

• Here, we also iteratively generate an approximation by constructing a
dual functions.
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where
ϕ(β  )  =  max  dy

s.t.  Gy  ≤  β
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Example

zIP max= −x− y

s.t. −25x+ 20y ≤ 30

x+ 2y ≤ 10

2x− y ≤ 15

−2x− 10y ≤ −15

x, y ∈ Z
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Value Function Reformulation

zIP max= x∈Z−x+ ϕ(x),

where

ϕx(x max=) −y

20s.t. y ≤ 30 + 25x

2y ≤ 10− x

−y ≤ 15− 2x

−10y ≤ −15 + 2x

y ∈ Z 1 2 3 4 5 6 7 8
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• Note again that ϕx(x) = ϕ(d − Dx) and so is not the value function
itself.
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An MILP Example

min −x1 + y1 + y2 + y3

s.t. −x1 + 2y1 − y2 + y3 = 0

x1 ∈ [0, 3]

x1, y1 ∈ Z+

y2, y3 ∈ R+

Master problem:

min −x1 + θ

s.t. θ ≥ ϕ(x1)

x1 ∈ [0, 3]

x1 ∈ Z+

θ free

Subproblem (β = x1):

ϕ(β) =min y1 + y2 + y3

s.t. 2y1 − y2 + y3 = β

y1 ∈ Z+

y2, y3 ∈ R+
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An MILP Example

Subproblem:

ϕ(β) =min y1 + y2 + y3

s.t. 2y1 − y2 + y3 = β

y1 ∈ Z+

y2, y3 ∈ R+
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Example

Iteration 1:

min −x1

s.t. x1 ∈ [0, 3]

x1 ∈ Z+

x1
1 = 3, θ1 = −∞

ϕ(β = x1
1) =min y1 + y2 + y3

s.t. 2y1 − y2 + y3 = 3

y1 ∈ Z+

y2, y3 ∈ R+
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Example

Iteration 2:

min −x1 + θ

s.t. θ ≥ min{x1 − 1,−x1 + 6}
x1 ∈ [0, 3]

x1 ∈ Z+

x2
1 = 0, θ2 = −1

ϕ(β = x2
1) =min y1 + y2 + y3

s.t. 2y1 − y2 + y3 = 0

y1 ∈ Z+

y2, y3 ∈ R+
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Example

Iteration 3:

min −x1 + θ

s.t. θ ≥ min{x1 − 1,−x1 + 6}
θ ≥ −x1

x1 ∈ [0, 3]

x1 ∈ Z+

x3
1 = 1, θ3 = 0

ϕ(β = x3
1) =min y1 + y2 + y3

s.t. 2y1 − y2 + y3 = 1

y1 ∈ Z+

y2, y3 ∈ R+
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Example

Iteration 4:

min −x1 + θ

s.t. θ ≥ min{x1 − 1,−x1 + 6}
θ ≥ −x1

θ ≥ min{x1,−x1 + 3}
x1 ∈ [0, 3]

x1 ∈ Z+

x4
1 = 3, θ4 = 2

ϕ(β = x4
1) =min y1 + y2 + y3

s.t. 2y1 − y2 + y3 = 3

y1 ∈ Z+

y2, y3 ∈ R+
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