

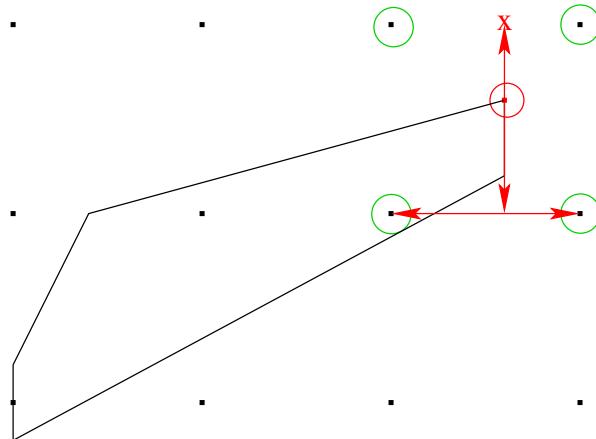
Integer Programming

Lecture 23

Heuristics in Integer Programming

- Heuristic methods are an extremely important aspect of integer programming in practice.
- Often it is the case that a near-optimal solution is “good enough.”
- Furthermore, even if an optimal solution is required, heuristic methods can accelerate the solution process.
- Heuristic methods are generally used in one of two modes.
 - As a stand-alone procedure used directly to obtain a solution or as a means to obtain an initial bound (*metaheuristics*).
 - As an integrated part of a branch-and-bound procedure (*primal heuristics*).
- In this lecture, we will focus on the latter use, since this is the way in which heuristics are generally used in off-the-shelf solvers.

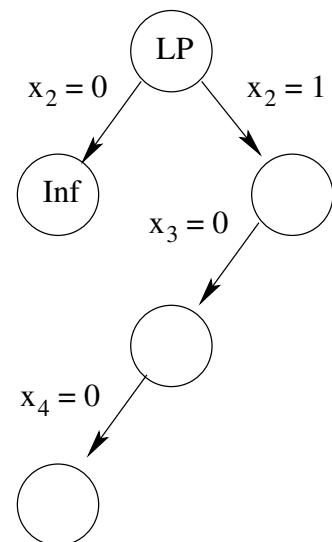
Simple Rounding



1. We first solve the LP relaxation to obtain an (infeasible) solution.
2. There may be a number of integer variables with fractional values.
3. We can round these variables one at a time, but there is no way to guarantee that this will lead to a feasible solution.
4. If there are k such variables, there are 2^k ways of rounding.
5. Use backtracking

Backtracking example

$$\begin{aligned}
 & \text{minimize } x_1 \\
 & \text{subject to:} \\
 & x_1 - 2x_2 + 2x_3 + 2x_4 = -1 \\
 & x_1 \geq 0 \\
 & x_2, x_3, x_4 \in \{0, 1\}
 \end{aligned} \quad \left. \right\} \quad \hat{x} = (0, 0.5, 0, 0)$$



When an LP is solved after each fixing: Diving (Bixby et al., 2000)

Rounding

- Other variants
 1. Randomized rounding may help in specific contexts: single machine scheduling, set covering, set packing etc. (Bertsimas and Weismantel, 2005)
 2. Rounding problem can be explicitly stated as a binary program (Berthold 2006)
- Importance of rounding
 1. Rounding is cheap
 2. Many different variants of rounding may be deployed easily
 3. Rounding is an important step in several other heuristics

Feasibility Pump: The Basic Scheme

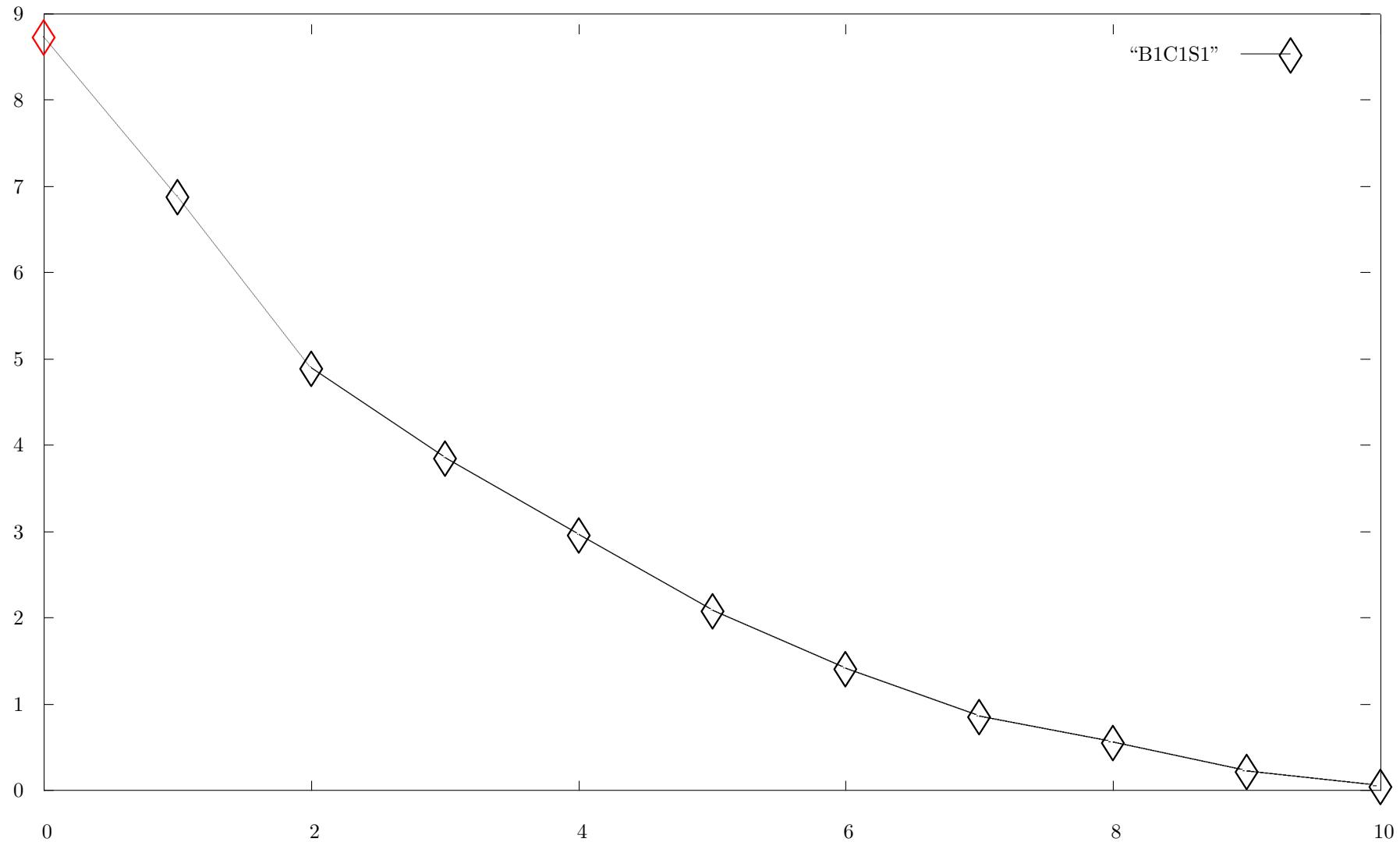
- We start from any $\hat{x}^0 \in \mathcal{P}$, and round to obtain \tilde{x}^0 .
- We look for a point $\hat{x}^1 \in \mathcal{P}$ which is *as close as possible* to \tilde{x}^0 by solving the problem:

$$\min\{\Delta(x, \tilde{x}) \mid x \in \mathcal{P}\}$$

If we choose the measure $\Delta(x, \tilde{x})$ properly, this problem is easily solvable.

- If $\hat{x}^1 \in \mathcal{S}$, we are done.
- Otherwise, we obtain \tilde{x}^1 by rounding \hat{x}^1 , and repeat.
- From a geometric point of view, this simple heuristic generates *two hopefully convergent trajectories of points \hat{x}^i and \tilde{x}^i* .
- These satisfy feasibility in a complementary but partial way:
 1. \hat{x}^i , satisfies the linear constraints,
 2. \tilde{x}^i , the integrality requirements.

FP: Plot of the infeasibility measure $\Delta(\hat{x}^i, \tilde{x}^i)$ at iteration i



FP: Definition of $\Delta(\hat{x}, \tilde{x})$

- We consider the *L_1 -norm distance* between a vector $x \in \mathcal{P}$ and a vector $\tilde{x} \in \mathcal{S}$:

$$\Delta(x, \tilde{x}) = \sum_{j \in I} |x_j - \tilde{x}_j|$$

where I is the set of indices of the integer variables.

- The *continuous variables* do not contribute to this function.
- In the case of a *binary* MILP:

$$\Delta(x, \tilde{x}) := \sum_{j \in I: \tilde{x}_j=0} x_j + \sum_{j \in I: \tilde{x}_j=1} (1 - x_j)$$

- Given an integer \tilde{x} , the *closest point* $\hat{x} \in \mathcal{P}$ can therefore be determined by solving the LP:

$$\min\{\Delta(x, \tilde{x}) : Ax \leq b\}$$

FP: Implementation

- We can think of the distance as a **pressure difference** between \hat{x} and \tilde{x} that we try to reduce by **pumping** the integrality of \tilde{x} into \hat{x} .
- On the other hand, it is clearly a **measure of vicinity** and therefore defines a neighborhood.
- The main problem with this method is **stalling** when $\Delta(\hat{x}, \tilde{x})$ stops decreasing (we may produce the same solution).
 - In this case, we **reverse the rounding** of some variables \hat{x}_j , $j \in I$, even if this increases $\Delta(\hat{x}, \tilde{x})$
 - This is done so as to minimize the increase in the current value of $\Delta(\hat{x}, \tilde{x})$.

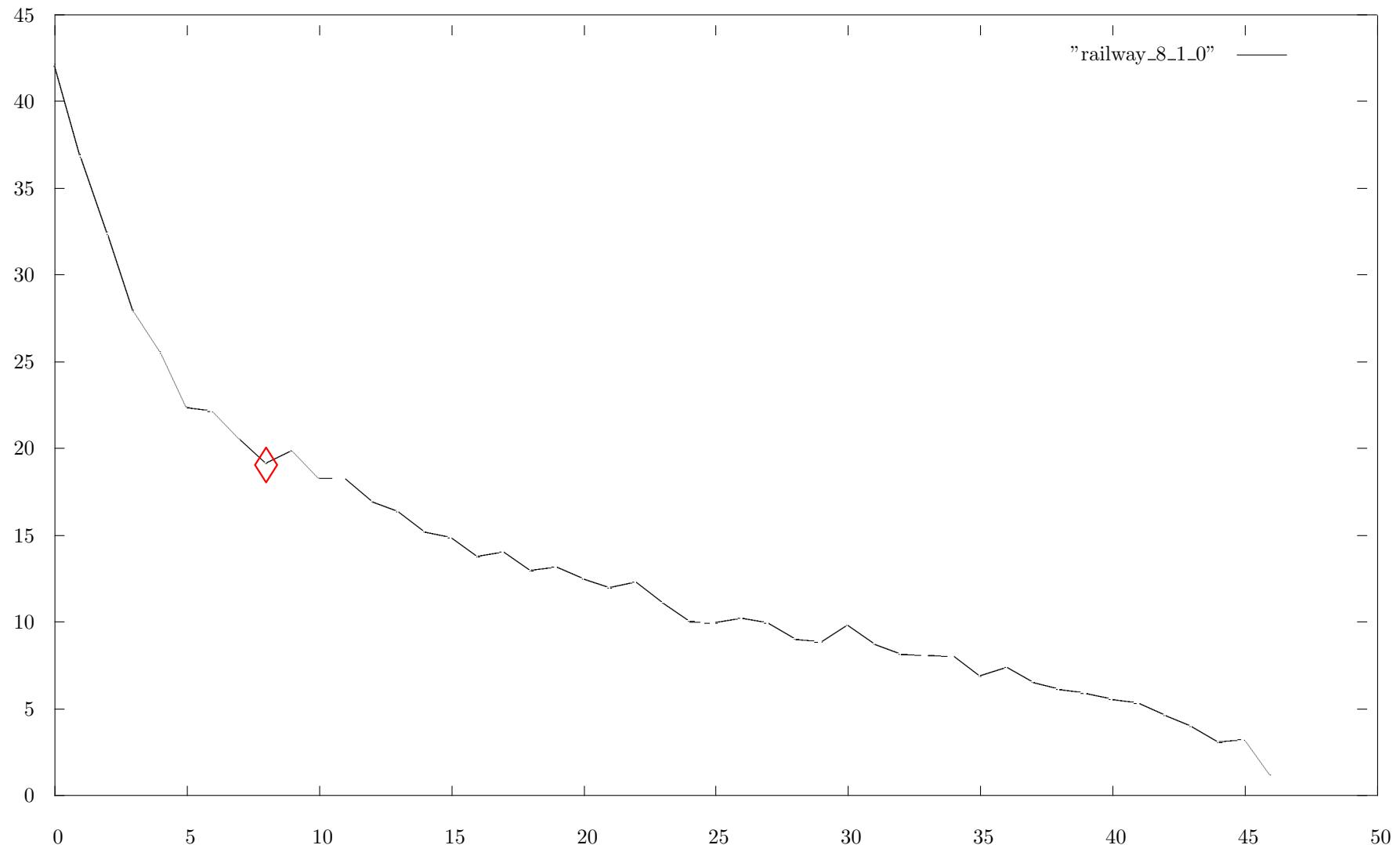
FP: A first implementation

```

1. initialize nIT := 0 and  $\hat{x} := \operatorname{argmax}\{c^\top x : Ax \leq b\}$ ;
2. if  $\hat{x}$  is integer, return( $\hat{x}$ );
3. let  $\tilde{x} := [\hat{x}]$  (= rounding of  $\hat{x}$ );
4. while (time < TL) do
5.   let nIT := nIT + 1 and  $\hat{x} := \operatorname{argmin}\{\Delta(x, \tilde{x}) : Ax \leq b\}$ ;
6.   if  $\hat{x}$  is integer, return( $\hat{x}$ );
7.   if  $\exists j \in I : [\hat{x}_j] \neq \tilde{x}_j$  then
8.      $\tilde{x} := [\hat{x}]$ 
     else
9.     flip the rand( $T/2, 3T/2$ ) entries  $\tilde{x}_j$  with max  $|\hat{x}_j - \tilde{x}_j|$ 
10.    endif
11.  enddo

```

FP: Plot of the infeasibility measure $\Delta(\hat{x}, \tilde{x})$ at each pumping cycle



Neighborhood Search

- Rounding schemes explore neighborhoods defined by $\lfloor x_i^* \rfloor \leq x_i \leq \lceil x_i^* \rceil, i \in I$.
- Feasibility pump explores neighborhoods defined by the *nearby* basic feasible solutions
- Pivoting heuristics explores neighborhoods of \hat{x} defined by the respective pivoting and complementing schemes.

Each of the above neighborhoods are explored using special methods

Exploring Neighborhoods

- The MILP solver itself can also be used as a search tool!
- A small neighborhood expressed as a MILP can be explored by using a MILP solver over it.
- Recall the “optimal rounding problem.”

Local Branching

- Now assume we have a feasible solution \bar{x} , the so-called **reference solution**, and let $\bar{S} := \{j \in I \mid \bar{x}_j = 1\}$ denote the binary support of \bar{x} .
- For a given positive integer parameter k , we define the **k -OPT neighborhood** $\mathcal{N}(\bar{x}, k)$ of \bar{x} as the set of the feasible solutions satisfying

$$\Delta(x, \bar{x}) := \sum_{j \in \bar{S}} (1 - x_j) + \sum_{j \in I \setminus \bar{S}} x_j \leq k, \quad (1)$$

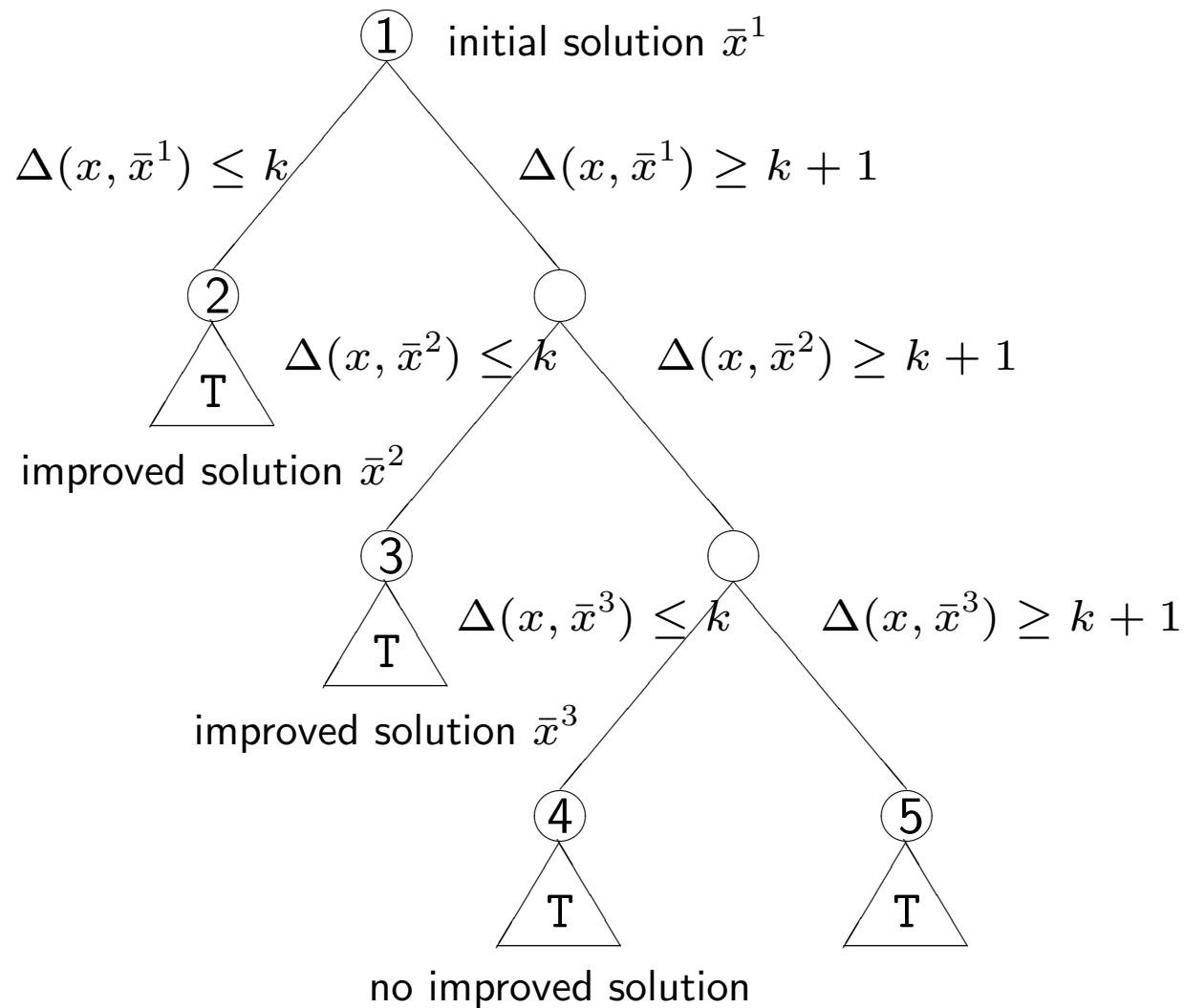
known as the *local branching constraint*.

- This constraint requires at most k variables have values different from \bar{x} .
- Constraint (1) can also be used to branch within a branch and bound:

$$\Delta(x, \bar{x}) \leq k \quad (\text{left branch}) \quad \text{or} \quad \Delta(x, \bar{x}) \geq k + 1 \quad (\text{right branch})$$

- The neighborhoods defined by the local branching constraints can be searched by using a MILP solver recursively.

LB: The Basic Scheme



LB: Enhancements

- The previous scheme can be **enhanced** in two ways:
 - **Imposing a time/node limit** on the *left-branch* nodes:
 - * In some cases, the exact solution of the left-branch node can be **too time consuming** for the value of the parameter k at hand.
 - * Hence, from the point of view of a heuristic, it is reasonable to impose a time/node limit for the left-branch computation.
 - **Increasing diversification**:
 - * A further improvement of the heuristic performance can be obtained by exploiting diversification mechanisms in the **spirit of metaheuristic techniques**.
 - * In this scheme, **diversification** is applied by *varying the value of k* and accepting non-improving solutions.
- On the other hand, it is easy to see that an **alternative implementation** would be **within the branch-and-cut tree** of a MILP solver.
- More precisely, we **search** using the branch-and-cut algorithm itself for a *fixed number of nodes*.
- Whenever a new incumbent has been found, this LB can be fed into this local search to limit enumeration.

Relaxation Induced Neighborhood Search

- A similar concept of neighborhood takes into account simultaneously both
 - the *incumbent* solution \bar{x} , and
 - the *the solution of the continuous relaxation* \hat{x} ,at a given node of the branch-and-bound tree.
- \bar{x} and \hat{x} are compared and all the binary variables that assume the same value are *hard-fixed* in an associated MILP.
- This associated MILP is then solved by using the MILP solver as a black-box.
- In case the incumbent solution is improved, \bar{x} is updated in the rest of the tree.
- This method turns out to give very competitive results on general MILPs.
- It is particularly suitable in the *scheduling context* where the problem is very constrained and any non-trivial value of k would be too large.

RINS Formulation

RINS: Let \tilde{x} be a known feasible solution and let \hat{x} be an LP-solution at some node in the search tree. We create a new MILP (Danna et al., 2005):

$$\text{minimize } z = cx$$

s.t.

$$Ax \leq b,$$

$$x_i = \tilde{x}_i \quad \forall i \quad \text{s.t. } \tilde{x}_i = \hat{x}_i$$

$$x \in \mathbb{Z}^r \times \mathbb{R}^{n-r}.$$

Working with Infeasible Solutions

- Sometimes waiting to have a **fully feasible solution** before starting a local search approach **is unnecessary**.
- **Combining** the work of both ***FP* and *LB*** provides the following more flexible scheme:
 1. **FP** is executed for a *limited number of iterations* and the *integer (infeasible)* solution \tilde{x} with minimum distance Δ to a feasible solution \hat{x} of the LP relaxation **is stored**;
 2. **LB** starts by using \tilde{x} as a *reference solution*, replacing the original objective function with

$$\min \sum_{i \in T} y_i$$

where T is the set of the indices of the **constraints violated** by \tilde{x} and a binary variable y_i has been defined for each constraint $i \in T$.

Working with Infeasible Solutions (cont.)

- Hence, in a first phase, LB attempts to *improve* the current infeasible solution by reducing the number of infeasible constraints in the spirit of the first phase of the simplex algorithm.
- In the second phase, once a feasible solution has been found, the *original* objective function is then *restored* and LB takes care of *improving the quality* of such a solution.