Integer Programming

Lecture 23

Heuristics in Integer Programming

Heuristic methods are an extremely important aspect of integer
programming In practice.

Often it is the case that a near-optimal solution is “good enough.”

Furthermore, even if an optimal solution is required, heuristic methods
can accelerate the solution process.

Heuristic methods are generally used in one of two modes.

— As a stand-alone procedure used directly to obtain a solution or as a
means to obtain an initial bound (metaheuristics).

— As an integrated part of a branch-and-bound procedure (primal
heuristics).

In this lecture, we will focus on the latter use, since this is the way in
which heuristics are generally used in off-the-shelf solvers.

Simple Rounding

. We first solve the LP relaxation to obtain an (infeasible) solution.
. There may be a number of integer variables with fractional values.

. We can round these variables one at a time, but there is no way to
guarantee that this will lead to a feasible solution.

. If there are k such variables, there are 2% ways of rounding.

. Use backtracking

Backtracking example

minimize xy
subject to:

$1—2£C2—|—2£C3—|-2$4: —1 > T = (0,05,0,0)
I Z 0
To, T3, 24 € {0,1})

When an LP is solved after each fixing: Diving (Bixby et al., 2000)

Rounding

e Other variants

1. Randomized rounding may help in specific contexts: single machine
scheduling, set covering, set packing etc. (Bertsimas and Weismantel,
2005)

2. Rounding problem can be explicitly stated as a binary program
(Berthold 2006)

e Importance of rounding

1. Rounding is cheap
2. Many different variants of rounding may be deployed easily
3. Rounding is an important step in several other heuristics

Feasibility Pump: The Basic Scheme

We start from any 2" € P, and round to obtain 2.

We look for a point ' € P which is as close as possible to ¥ by solving
the problem:

min{A(z,2) | x € P}

If we choose the measure A(z, x) properly, this problem is easily solvable.
If 21 € S, we are done.
Otherwise, we obtain Z! by rounding &', and repeat.

From a geometric point of view, this simple heuristic generates two
hopefully convergent trajectories of points £* and x°.

These satisfy feasibility in a complementary but partial way:

1. #*, satisfies the linear constraints,
2. 7', the integrality requirements.

9

FP: Plot of the infeasibility measure A(%!,7") at iteration
1

10

FP: Definition of A(Z,)

We consider the L{-norm distance between a vector x € P and a vector

T €S:

where [is the set of indices of the integer variables.

The continuous variables do not contribute to this function.

A, T) =) |z;— T

Jjel

In the case of a binary MILP:

Given an integer z, the closest point & € P can therefore be determined

by solving the LP:

min{A(z,z) : Ax < b}

11

FP: Implementation

e We can think of the distance as a pressure difference between z and =
that we try to reduce by pumping the integrality of x into .

e On the other hand, it is clearly a measure of vicinity and therefore defines
a neighborhood.

e The main problem with this method is stalling when A(Z,z) stops
decreasing (we may produce the same solution).

— In this case, we reverse the rounding of some variables z;, j € I, even
if this increases A(z, 1)
— This is done so as to minimize the increase in the current value of

A(2, 7).

12

10.
11.

00 ~NO Ol b WDN -

FP: A first implementation

initialize nIT := 0 and & := argmax{c'z : Az < b};
if is integer, return(z);

. let z:= 2] (= rounding of Z);
. while (time < TL) do

let nIT := nIT +1 and Z:= argmin{A(z,z): Az < b};
if & is integer, return(Z);
if d5e€l: [f]] 7&%] then
T = [1]
else
flip the rand(T/2,3T/2) entries x; with max |Z; —
endif
enddo

13

FP: Plot of the infeasibility measure A(z,x) at each
pumping cycle

45

\
“railway_8_1_.0" ——

40\
35%\
30 - \
25
20 :

N
15 —

10 N

14

Neighborhood Search

e Rounding schemes explore neighborhoods defined by |zf] < z; <
(xf],ie 1.

e Feasibility pump explores neighborhoods defined by the nearby basic
feasible solutions

e Pivoting heuristics explores neighborhoods of & defined by the respective
pivoting and complementing schemes.

Each of the above neighborhoods are explored using special methods

15

Exploring Neighborhoods

e [he MILP solver itself can also be used as a search tool!

e A small neighborhood expressed as a MILP can be explored by using a
MILP solver over it.

e Recall the “optimal rounding problem.”

16

Local Branching

Now assume we have a feasible solution Z, the so-called reference
solution, and let S':={j € I | x; = 1} denote the binary support of z.

For a given positive integer parameter k, we define the Ek-OPT
neighborhood N (Z, k) of Z as the set of the feasible solutions satisfying

Alw,z)=> (I—aj)+ Y x; <k (1)
jES jeI\S
known as the local branching constraint.

This constraint requires at most k variables have values different from .

Constraint (1) can also be used to branch within a branch and bound:
A(x,z) <k (left branch) or A(z,z) > k+1 (right branch)

The neighborhoods defined by the local branching constraints can be
searched by using a MILP solver recursively.

17

LB: The Basic Scheme

1

initial solution &

no improved solution

18

LB: Enhancements

e The previous scheme can be enhanced in two ways:

— Imposing a time/node limit on the left-branch nodes:
* In some cases, the exact solution of the left-branch node can be too time
consuming for the value of the parameter k£ at hand.

* Hence, from the point of view of a heuristic, it is reasonable to impose a time/node
limit for the left-branch computation.

— Increasing diversification:
* A further improvement of the heuristic performance can be obtained by exploiting
diversification mechanisms in the spirit of metaheuristic techniques.

* In this scheme, diversification is applied by varying the value of k and accepting

non-improving solutions.

e On the other hand, it is easy to see that an alternative implementation
would be within the branch-and-cut tree of a MILP solver.

e More precisely, we search using the branch-and-cut algorithm itself for a
fixed number of nodes.

e \Whenever a new incumbent has been found, this LB can be fed into this
local search to limit enumeration.

20

Relaxation Induced Neighborhood Search

A similar concept of neighborhood takes into account simultaneously
both

— the incumbent solution Z, and
— the the solution of the continuous relaxation I,

at a given node of the branch-and-bound tree.

x and 2 are compared and all the binary variables that assume the same
value are hard-fixed in an associated MILP.

This associated MILP is then solved by using the MILP solver as a
black-box.

In case the incumbent solution is improved, & is updated in the rest of
the tree.

This method turns out to give very competitive results on general MILPs.

It is particularly suitable in the scheduling context where the problem is
very constrained and any non-trivial value of k£ would be too large.

21

RINS Formulation

RINS: Let £ be a known feasible solution and let # be an LP-solution at
some node in the search tree. We create a new MILP (Danna et al., 2005):

minimize z = cx
S.t.
Ax < b,

xeZ xR"".

22

Working with Infeasible Solutions

e Sometimes waiting to have a fully feasible solution before starting a local
search approach is unnecessary.

e Combining the work of both FP and LB provides the following more
flexible scheme:

1. FP is executed for a /imited number of iterations and the integer
(infeasible) solution & with minimum distance A to a feasible solution

2 of the LP relaxation is stored:
2. LB starts by using x as a reference solution, replacing the original

objective function with
min Z Ui

where T is the set of the indices of the constraints violated by x and
a binary variable y; has been defined for each constraint 7 € T.

23

Working with Infeasible Solutions (cont.)

e Hence, in a first phase, LB attempts to improve the current infeasible
solution by reducing the number of infeasible constraints in the spirit of
the first phase of the simplex algorithm.

e In the second phase, once a feasible solution has been found, the original
objective function is then restored and LB takes care of improving the
quality of such a solution.

