
Integer Programming

Lecture 23

 2

Heuristics in Integer Programming

• Heuristic methods are an extremely important aspect of integer
programming in practice.

• Often it is the case that a near-optimal solution is “good enough.”

• Furthermore, even if an optimal solution is required, heuristic methods
can accelerate the solution process.

• Heuristic methods are generally used in one of two modes.

– As a stand-alone procedure used directly to obtain a solution or as a
means to obtain an initial bound (metaheuristics).

– As an integrated part of a branch-and-bound procedure (primal
heuristics).

• In this lecture, we will focus on the latter use, since this is the way in
which heuristics are generally used in off-the-shelf solvers.

2

 3

Simple Rounding

x

1. We first solve the LP relaxation to obtain an (infeasible) solution.

2. There may be a number of integer variables with fractional values.

3. We can round these variables one at a time, but there is no way to
guarantee that this will lead to a feasible solution.

4. If there are k such variables, there are 2k ways of rounding.

5. Use backtracking

3

 4

Backtracking example

minimize x1

subject to:
x1 − 2x2 + 2x3 + 2x4 = −1
x1 ≥ 0
x2, x3, x4 ∈ {0, 1}

 x̂ = (0, 0.5, 0, 0)

x
2

= 0 x
2

= 1

x
3

= 0

x
4

= 0

LP

Inf

When an LP is solved after each fixing: Diving (Bixby et al., 2000)

4

 5

Rounding

• Other variants

1. Randomized rounding may help in specific contexts: single machine
scheduling, set covering, set packing etc. (Bertsimas and Weismantel,
2005)

2. Rounding problem can be explicitly stated as a binary program
(Berthold 2006)

• Importance of rounding

1. Rounding is cheap
2. Many different variants of rounding may be deployed easily
3. Rounding is an important step in several other heuristics

5

 8

Feasibility Pump: The Basic Scheme

• We start from any x̂0 ∈ P, and round to obtain x̃0.

• We look for a point x̂1 ∈ P which is as close as possible to x̃0 by solving
the problem:

min{∆(x, x̃) | x ∈ P}

If we choose the measure ∆(x, x̃) properly, this problem is easily solvable.

• If x̂1 ∈ S, we are done.

• Otherwise, we obtain x̃1 by rounding x̂1, and repeat.

• From a geometric point of view, this simple heuristic generates two
hopefully convergent trajectories of points x̂i and x̃i.

• These satisfy feasibility in a complementary but partial way:

1. x̂i, satisfies the linear constraints,
2. x̃i, the integrality requirements.

8

 9

FP: Plot of the infeasibility measure ∆(x̂i, x̃i) at iteration
i

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10

“B1C1S1” ♢♢

♢

♢

♢

♢

♢
♢

♢
♢

♢ ♢

9

 10

FP: Definition of ∆(x̂, x̃)

• We consider the L1-norm distance between a vector x ∈ P and a vector
x̃ ∈ S:

∆(x, x̃) =
∑
j∈I

|xj − x̃j|

where I is the set of indices of the integer variables.

• The continuous variables do not contribute to this function.

• In the case of a binary MILP:

∆(x, x̃) :=
∑

j∈I:x̃j=0

xj +
∑

j∈I:x̃j=1

(1− xj)

• Given an integer x̃, the closest point x̂ ∈ P can therefore be determined
by solving the LP:

min{∆(x, x̃) : Ax ≤ b}

10

 11

FP: Implementation

• We can think of the distance as a pressure difference between x̂ and x̃
that we try to reduce by pumping the integrality of x̃ into x̂.

• On the other hand, it is clearly a measure of vicinity and therefore defines
a neighborhood.

• The main problem with this method is stalling when ∆(x̂, x̃) stops
decreasing (we may produce the same solution).

– In this case, we reverse the rounding of some variables x̂j, j ∈ I, even
if this increases ∆(x̂, x̃)

– This is done so as to minimize the increase in the current value of
∆(x̂, x̃).

11

 12

FP: A first implementation

1. initialize nIT := 0 and x̂ := argmax{c⊤x : Ax ≤ b};
2. if x̂ is integer, return(x̂);
3. let x̃ := [x̂] (= rounding of x̂);
4. while (time < TL) do

5. let nIT := nIT +1 and x̂ := argmin{∆(x, x̃) : Ax ≤ b};
6. if x̂ is integer, return(x̂);
7. if ∃ j ∈ I : [x̂j] ̸= x̃j then

8. x̃ := [x̂]
else

9. flip the rand(T/2,3T/2) entries x̃j with max |x̂j − x̃j|
10. endif

11. enddo

12

 13

FP: Plot of the infeasibility measure ∆(x̂, x̃) at each
pumping cycle

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45 50

”railway 8 1 0”

♢

13

 14

Neighborhood Search

• Rounding schemes explore neighborhoods defined by ⌊x∗
i ⌋ ≤ xi ≤

⌈x∗
i ⌉, i ∈ I.

• Feasibility pump explores neighborhoods defined by the nearby basic
feasible solutions

• Pivoting heuristics explores neighborhoods of x̂ defined by the respective
pivoting and complementing schemes.

Each of the above neighborhoods are explored using special methods

14

 15

Exploring Neighborhoods

• The MILP solver itself can also be used as a search tool!

• A small neighborhood expressed as a MILP can be explored by using a
MILP solver over it.

• Recall the “optimal rounding problem.”

15

 16

Local Branching

• Now assume we have a feasible solution x̄, the so-called reference
solution, and let S := {j ∈ I | x̄j = 1} denote the binary support of x̄.

• For a given positive integer parameter k, we define the k-OPT
neighborhood N (x̄, k) of x̄ as the set of the feasible solutions satisfying

∆(x, x̄) :=
∑
j∈S

(1− xj) +
∑

j∈I\S

xj ≤ k, (1)

known as the local branching constraint.

• This constraint requires at most k variables have values different from x̄.

• Constraint (1) can also be used to branch within a branch and bound:

∆(x, x̄) ≤ k (left branch) or ∆(x, x̄) ≥ k + 1 (right branch)

• The neighborhoods defined by the local branching constraints can be
searched by using a MILP solver recursively.

16

 17

LB: The Basic Scheme

����
1 initial solution x̄1

∆(x, x̄1) ≤ k

%
%

%
%

%
%

%
%%

����
2
�

�
�

�� T
T

T
TT

T

improved solution x̄2

����
∆(x, x̄1) ≥ k + 1

e
e
e
e
e
e
e
ee

����
3

%
%

%
%

%
%

%
%%

∆(x, x̄2) ≤ k

T
T

T
T

TT�
�

�
��

improved solution x̄3

e
e
e
e
e
e
e
ee

����

∆(x, x̄2) ≥ k + 1

����
4

%
%

%
%

%
%

%
%%

∆(x, x̄3) ≤ k

�
�

�
�� T

T
T

TT

T

no improved solution

����
5

e
e
e
e
e
e
e
ee

∆(x, x̄3) ≥ k + 1

�
�

�
�� T

T
T

TT

T

17

 18

LB: Enhancements

• The previous scheme can be enhanced in two ways:

– Imposing a time/node limit on the left-branch nodes:
∗ In some cases, the exact solution of the left-branch node can be too time

consuming for the value of the parameter k at hand.

∗ Hence, from the point of view of a heuristic, it is reasonable to impose a time/node

limit for the left-branch computation.

– Increasing diversification:
∗ A further improvement of the heuristic performance can be obtained by exploiting

diversification mechanisms in the spirit of metaheuristic techniques.

∗ In this scheme, diversification is applied by varying the value of k and accepting

non-improving solutions.

• On the other hand, it is easy to see that an alternative implementation
would be within the branch-and-cut tree of a MILP solver.

• More precisely, we search using the branch-and-cut algorithm itself for a
fixed number of nodes.

• Whenever a new incumbent has been found, this LB can be fed into this
local search to limit enumeration.

18

 20

Relaxation Induced Neighborhood Search

• A similar concept of neighborhood takes into account simultaneously
both

– the incumbent solution x̄, and
– the the solution of the continuous relaxation x̂,

at a given node of the branch-and-bound tree.

• x̄ and x̂ are compared and all the binary variables that assume the same
value are hard-fixed in an associated MILP.

• This associated MILP is then solved by using the MILP solver as a
black-box.

• In case the incumbent solution is improved, x̄ is updated in the rest of
the tree.

• This method turns out to give very competitive results on general MILPs.

• It is particularly suitable in the scheduling context where the problem is
very constrained and any non-trivial value of k would be too large.

20

 21

RINS Formulation

RINS: Let x̃ be a known feasible solution and let x̂ be an LP-solution at
some node in the search tree. We create a new MILP (Danna et al., 2005):

minimize z = cx

s.t.

Ax ≤ b,

xi = x̃i ∀i s.t. x̃i = x̂i

x ∈ Zr × Rn−r.

21

 22

Working with Infeasible Solutions

• Sometimes waiting to have a fully feasible solution before starting a local
search approach is unnecessary.

• Combining the work of both FP and LB provides the following more
flexible scheme:

1. FP is executed for a limited number of iterations and the integer
(infeasible) solution x̃ with minimum distance ∆ to a feasible solution
x̂ of the LP relaxation is stored;

2. LB starts by using x̃ as a reference solution, replacing the original
objective function with

min
∑
i∈T

yi

where T is the set of the indices of the constraints violated by x̃ and
a binary variable yi has been defined for each constraint i ∈ T .

22

 23

Working with Infeasible Solutions (cont.)

• Hence, in a first phase, LB attempts to improve the current infeasible
solution by reducing the number of infeasible constraints in the spirit of
the first phase of the simplex algorithm.

• In the second phase, once a feasible solution has been found, the original
objective function is then restored and LB takes care of improving the
quality of such a solution.

23

