Integer Programming

Lecture 3



Alternative Formulations

Recall our definition of a valid formulation from the last lecture.

A key concept in the rest of the course will be that every mathematical
model has many alternative formulations.

Many of the key methodologies in integer programming are essentially
automatic methods of reformulating a given model.

The goal of the reformulation is to make the model easier to solve.

There is a tradeoff between how difficult the reformulation itself is to
perform and the effectiveness of the resulting simplification.

Some reformulations may also dramatically increase the size of the
problem description in their exact form.



Simple Example: Knapsack Problem

e We are given a set N = {1,...n} of items and a capacity .
e There is a profit p; and a size w; associated with each item 7 € V.

e We want to choose the set of items that maximizes profit subject to the
constraint that their total size does not exceed the capacity.

e The most straightforward formulation is to introduce a binary variable x;
associated with each item.

e , takes value 1 if item 7 is chosen and 0 otherwise.

e [hen the formulation is

n
1max ijﬂi‘j
j=1
n
S.t. ija:j S %%
j=1

Tr; € {O, 1} V1

e Is this formulation correct?



An Alternative Formulation

o Letuscallaset C C N a coverif ) ._~w; > W.
e Further, a cover C is minimal if Zie(]\{j} w; < W for all j € C.

o Th%rr we claim that the following is also a valid formulation of the original
problem:

max ij:r;j
j=1

s.t. Z r; <|C|—1 for all minimal covers C
jel
z; € {0,1} ieN

e Which formulation is “better”?



Compact Formulations

A formulation is compact if the number of variables and constraints is
polynomial in the “size” of the original problem description.

This is only a rough definition, since the original problem may itself be
described in multiple equivalent ways.

To be more precise, we could say that the number of variables and
constraints should be polynomial in the number of original “structural”
variables.

The second formulation for the knapsack problem is then not compact
and this is a fundamental issue in solving MILPs in practice.

Not all problems even have compact (linear) formulations.

For example, we can prove that there is no compact formulation for
optimization over the set of binary n-vectors with an even number of 1's.

We will see other examples.



Back to the Facility Location Problem

e Recall our earlier formulation of this problem.

e Here is another formulation for the same problem:

min Z cjy; + Z Z di;jxij

1=1 5=1
S.t. Za:ij =1 A}
71=1
xz’j S yj \V/Z,]
Tij,Yj € {0, 1} \V/’L,]

e Notice that the set of integer solutions contained in each of the polyhedra
is the same (why?).

e However, the second polyhedron is strictly included in the first one (how
do we prove this?).

e Therefore, the second polyhedron will yield a better lower bound.

e The second polyhedron is a better approximation to the convex hull of
integer solutions.



Formulation Strength and ldeal Formulations

Consider two formulations A and B for the same MILP.

Denote the feasible regions corresponding to their LP relaxations as P4
and PB.

Formulation A is said to be at least as strong as (informally, we say
“tighter than") formulation B if P4 C Pg.

If the inclusion is strict, then A is stronger than B.

If S is the set of all feasible integer solutions for the MILP, then we must
have conv(S) C Py (why?).

A is ideal if conv(S) = Pa.

If we know an ideal formulation (of small enough size), we can solve the
MILP (why?).

How do our formulations of the knapsack problem compare by this
measure?



Strengthening Formulations

ldea: Can we simply combine the two formulations for the knapsack
problem to get the best of both worlds?

Answer: Yesl!

Often, a given formulation can be strengthened with additional
inequalities satisfied by all feasible integer solutions.

We call these valid inequalities and will formally define the concept later
in the course.

As in the knapsack case, it is often easy to identify an exponential c/ass
of such inequalities.

From a computational standpoint, the key is to only add the inequalities
that are most “relevant.”



Example

e Example: The Perfect Matching Problem

— We are given a set of n people that need to be paired in teams of two.
— Let ¢;; represent the “cost” of the team formed by persons ¢ and j.
— We wish to minimize total cost of all assignment.

— We can represent this problem on an undirected graph G = (N, E).
— The nodes represent the people and the edges represent pairings.

— We have z. = 1 if the endpoints of e are matched, . = 0 otherwise.

min Z Cole
e={i.j}€E
s.t. Z Tij = 1, Vie N

{il{i.i}eE}
z. € {0,1}, Ve ={i,j} € E.
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Valid Inequalities for Matching
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Consider the graph on the left above.

The optimal perfect matching has value L + 2.

The optimal solution to the LP relaxation has value 3.
This formulation can be extremely weak.

Add the valid inequality x4 + x35 > 1.

Every perfect matching satisfies this inequality.
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The Odd Set Inequalities

We can generalize the inequality from the last slide.
Consider the cut S corresponding to any odd set of nodes.

The cutset corresponding to S is

60(S)=1{{i,j} e ElieS,j&S}.

An odd cutset is any §(S) for which |S| is odd.

Note that every perfect matching contains at least one edge from every
odd cutset.

Hence, each odd cutset induces a possible valid inequality.

Z r. > 1,5 C N,|S| odd.
e€d(S)
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Using the New Formulation

If we add all of the odd set inequalities, the new formulation is ideal.
Hence, we can solve this LP and get a solution to the IP.

However, the number of inequalities is exponential in size, so this is not
really practical, i.e., the formulation is not compact.

Recall that only a small number of these inequalities will be active at the
optimal solution.

Later, we will see how we can efficiently generate these inequalities on
the fly to solve the IP.
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Extended Formulations

We have now seen two examples of strengthening formulations using
additional constraints.

However, changing the set of variables can also have a dramatic effect.

We call a formulation with additional variables not appearing in the
original model an “extended formulation.”

Example: A Lot-sizing Problem

— We want to minimize the costs of production, storage, and set-up.
— Data for periodt =1, ..., T:

x d;: total demand,

x c;: production set-up cost,

x pg. unit production cost,

x hy: unit storage cost.
— Variables for periodt =1, ..., T:

x Y. prodution quantity

* St. storage quantity

x Xt. a binary variable, whether to produce
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Lot-sizing: The “natural” formulation

e Here is the formulation based on the “natural’ set of variables:
T

min Z(ptyt + hyse + ciy)
t=1

s.t. y1 = dq + sq,
Si_1+ys=di+s¢, fort=2,...,T,
Y < Wy, fort=1,...,T,
st = 0,
s,y € RL,
r € {0,1}%.

e Here, w = ZtT:1 d;, an upper bound on ;.
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Lot-sizing: The “extended” formulation

Suppose we split the production lot in period ¢ into smaller pieces.

Define the variables ¢;; to be the production in period ¢ designated to
satisfy demand in period t > .

Now, y; = ZtT:z Qit-

With the new set of variables, we can impose the tighter constraint

Gt < dyx;fori=1,...,Tandt=1,...,T.

The additional variables strengthen the formulation.

Again, this is contrary to conventional wisdom for formulating linear
programs.
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Strength of Formulation for Lot-sizing

e Although the formulation from the previous slide is much stronger than
our original, it is still not ideal.

e Consider the following sample data.

# The demands for six periods
DEMAND = [6, 7, 4, 6, 3, 8]

# The production cost for six periods
PRODUCTION_COST = [3, 4, 3, 4, 4, 5]

# The storage cost for six periods
STORAGE_COST = [1, 1, 1, 1, 1, 1]

# The set up cost for six periods
SETUP_COST = [12, 15, 30, 23, 19, 45]

# Set of periods
PERIODS = range(len(DEMAND))
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Strength of Formulation for Lot-sizing (cont’d)

Optimal Total Cost is: 171.42016761

Period O : 13 units produced, 7 units stored, 6 units sold
0.38235294 is the value of the fixed charge variable

Period 1 : O units produced, O units stored, 7 units sold
0.0 is the value of the fixed charge variable

Period 2 : 4 units produced, O units stored, 4 units sold
0.19047619 is the value of the fixed charge variable

Period 3 : 6 units produced, O units stored, 6 units sold
0.35294118 is the value of the fixed charge variable

Period 4 : 11 units produced, 8 units stored, 3 units sold
1.0 is the value of the fixed charge variable

Period 5 : O units produced, O units stored, 8 units sold

0.0 is the value of the fixed charge variable

e In period 0O, it appears that we produced the full amount required to
satisfy demand, but the fixed charge variable doesn’t have value 1.

e What is happening here?



Strength of Formulation for Lot-sizing (cont’d)

Let's take a more detailed look:

production in period O for period O : 2.2941176
production in period O for period 1 : 2.6764706
production in period O for period 2 : 1.5294118
production in period O for period 3 : 2.2941176
production in period O for period 4 : 1.1470588
production in period O for period 5 : 3.0588235

What is the problem?
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An ldeal Formulation for Lot-sizing

We are only requiring that we have enough units on hand at time ¢ to
satisfy demand at time ¢.

This was enough in the old formulation since units were not reserved for
specific time periods.

Now, some of the units we have on hand at time ¢ may be reseved for
sale in a future period.

We can further strengthen the formulation by adding the constraint

t
Zq#zdt fOI'tzl,...,T
1=1

In fact, adding these additional constraints makes the formulation ideal.

If we project into the original space, we will get the convex hull of
solutions to the first formulation.

How would we prove this?
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Geometry of Extended Formulation

By adding variables, we are “lifting” the formulation P into a higher-
dimensional space to obtain Q.

When we project O back into the original space, the resulting projected
formulation is tighter, i.e., proj,(Q) C P.

It is possible that the number of inequalities needed to describe Q is
actually smaller than the number needed to describe P.

In some cases, the extended formulation is compact, whereas there is no
compact formulation in the original space.
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Contrast with Linear Programming

In linear programming, the same problem can also have multiple
formulations.

In LP, however, conventional wisdom is that bigger formulations take
longer to solve.

In IP, this conventional wisdom does not hold.
We have already seen two examples where it is not valid.

Generally speaking, the size of the formulation does not determine how
difficult the IP is.



