
Integer Programming

Lecture 3



 2

Alternative Formulations

• Recall our definition of a valid formulation from the last lecture.

• A key concept in the rest of the course will be that every mathematical
model has many alternative formulations.

• Many of the key methodologies in integer programming are essentially
automatic methods of reformulating a given model.

• The goal of the reformulation is to make the model easier to solve.

• There is a tradeoff between how difficult the reformulation itself is to
perform and the effectiveness of the resulting simplification.

• Some reformulations may also dramatically increase the size of the
problem description in their exact form.

2



 3

Simple Example: Knapsack Problem

• We are given a set N = {1, . . . n} of items and a capacity W .

• There is a profit pi and a size wi associated with each item i ∈ N .

• We want to choose the set of items that maximizes profit subject to the
constraint that their total size does not exceed the capacity.

• The most straightforward formulation is to introduce a binary variable xi

associated with each item.

• xi takes value 1 if item i is chosen and 0 otherwise.

• Then the formulation is

max
n∑

j=1

pjxj

s.t.

n∑
j=1

wjxj ≤ W

xi ∈ {0, 1 ∀} i

• Is this formulation correct?

3



 4

An  Alternative  Formulation

• Let  us  call  a  set  C  ⊆  N  a  cover  if  
∑

i∈C  wi  >  W  .

• Further,  a  cover  C  is  minimal  if  
∑

i∈C  \{j}  wi  ≤  W  for  all  j  ∈  C  .

• Then  we  claim  that  the  following  is  also  a  valid  formulation  of  the  original problem.

max  
∑n  

pj  xj

j=1

s.t.
∑
j∈C

xj ≤ |C| − 1 for all minimal covers C

xi ∈ {0, 1} i ∈ N

• Which formulation is “better”?

4



 5

Compact Formulations

• A formulation is compact if the number of variables and constraints is
polynomial in the “size” of the original problem description.

• This is only a rough definition, since the original problem may itself be
described in multiple equivalent ways.

• To be more precise, we could say that the number of variables and
constraints should be polynomial in the number of original “structural”
variables.

• The second formulation for the knapsack problem is then not compact
and this is a fundamental issue in solving MILPs in practice.

• Not all problems even have compact (linear) formulations.

• For example, we can prove that there is no compact formulation for
optimization over the set of binary n-vectors with an even number of 1’s.

• We will see other examples.

5



 6

Back to the Facility Location Problem

• Recall our earlier formulation of this problem.

• Here is another formulation for the same problem:

min
n∑

j=1

cjyj +
m∑
i=1

n∑
j=1

dijxij

s.t.

n∑
j=1

xij = 1 ∀i

xij ≤ yj ∀i, j
xij, yj ∈ {0, 1 ∀} i, j

• Notice that the set of integer solutions contained in each of the polyhedra
is the same (why?).

• However, the second polyhedron is strictly included in the first one (how
do we prove this?).

• Therefore, the second polyhedron will yield a better lower bound.

• The second polyhedron is a better approximation to the convex hull of
integer solutions.

6



 7

Formulation Strength and Ideal Formulations

• Consider two formulations A and B for the same MILP.

• Denote the feasible regions corresponding to their LP relaxations as PA

and PB.

• Formulation A is said to be at least as strong as (informally, we say
“tighter than”) formulation B if PA ⊆ PB.

• If the inclusion is strict, then A is stronger than B.

• If S is the set of all feasible integer solutions for the MILP, then we must
have conv(S) ⊆ PA (why?).

• A is ideal if conv(S) = PA.

• If we know an ideal formulation (of small enough size), we can solve the
MILP (why?).

• How do our formulations of the knapsack problem compare by this
measure?

7



 8

Strengthening Formulations

• Idea: Can we simply combine the two formulations for the knapsack
problem to get the best of both worlds?

• Answer: Yes!

• Often, a given formulation can be strengthened with additional
inequalities satisfied by all feasible integer solutions.

• We call these valid inequalities and will formally define the concept later
in the course.

• As in the knapsack case, it is often easy to identify an exponential class
of such inequalities.

• From a computational standpoint, the key is to only add the inequalities
that are most “relevant.”

8



 9

Example

• Example: The Perfect Matching Problem

– We are given a set of n people that need to be paired in teams of two.
– Let cij represent the “cost” of the team formed by persons i and j.
– We wish to minimize total cost of all assignment.
– We can represent this problem on an undirected graph G = (N,E).
– The nodes represent the people and the edges represent pairings.
– We have xe = 1 if the endpoints of e are matched, xe = 0 otherwise.

min
∑

e={i,j}∈E

cexe

s.t.
∑

{j|{i,j}∈E}

xij = 1, ∀i ∈ N

xe ∈ {0, 1}, ∀e = {i, j} ∈ E.

9



 10

Valid Inequalities for Matching

• Consider the graph on the left above.

• The optimal perfect matching has value L+ 2.

• The optimal solution to the LP relaxation has value 3.

• This formulation can be extremely weak.

• Add the valid inequality x24 + x35 ≥ 1.

• Every perfect matching satisfies this inequality.

10



 11

The Odd Set Inequalities

• We can generalize the inequality from the last slide.

• Consider the cut S corresponding to any odd set of nodes.

• The cutset corresponding to S is

δ(S) = {{i, j} ∈ E|i ∈ S, j ̸∈ S} .

• An odd cutset is any δ(S) for which |S| is odd.

• Note that every perfect matching contains at least one edge from every
odd cutset.

• Hence, each odd cutset induces a possible valid inequality.∑
e∈δ(S)

xe ≥ 1, S ⊂ N, |S| odd.

11



 12

Using the New Formulation

• If we add all of the odd set inequalities, the new formulation is ideal.

• Hence, we can solve this LP and get a solution to the IP.

• However, the number of inequalities is exponential in size, so this is not
really practical, i.e., the formulation is not compact.

• Recall that only a small number of these inequalities will be active at the
optimal solution.

• Later, we will see how we can efficiently generate these inequalities on
the fly to solve the IP.

12



 13

Extended Formulations

• We have now seen two examples of strengthening formulations using
additional constraints.

• However, changing the set of variables can also have a dramatic effect.

• We call a formulation with additional variables not appearing in the
original model an “extended formulation.”

• Example: A Lot-sizing Problem

– We want to minimize the costs of production, storage, and set-up.
– Data for period t = 1, . . . , T:
∗ dt: total demand,
∗ ct: production set-up cost,
∗ pt: unit production cost,
∗ ht: unit storage cost.

– Variables for period t = 1, . . . , T:
∗
∗
∗

13

 

 

 

 
  

yt: prodution quantity

st  : storage quantity

xt: a binary variable, whether to produce



 14

Lot-sizing: The “natural” formulation

• Here is the formulation based on the “natural” set of variables:

min
T∑

t=1

(ptyt + htst + ctxt)

s.t. y1 = d1 + s1,

st−1 + yt = dt + st, for t = 2, . . . , T,

yt ≤ ωxt, for t = 1, . . . , T,

sT = 0,

s, y ∈ RT
+,

x ∈ {0, 1}T .

• Here, ω =
∑T

t=1 dt, an upper bound on yt.

14



 15

Lot-sizing: The “extended” formulation

• Suppose we split the production lot in period t into smaller pieces.

• Define the variables qit to be the production in period i designated to
satisfy demand in period t ≥ i.

• Now, yi =
∑T

t=i qit.

• With the new set of variables, we can impose the tighter constraint

qit ≤ dtxi for i = 1, . . . , T and t = 1, . . . , T.

• The additional variables strengthen the formulation.

• Again, this is contrary to conventional wisdom for formulating linear
programs.

15



 16

Strength of Formulation for Lot-sizing

• Although the formulation from the previous slide is much stronger than
our original, it is still not ideal.

• Consider the following sample data.

# The demands for six periods

DEMAND = [6, 7, 4, 6, 3, 8]

# The production cost for six periods

PRODUCTION_COST = [3, 4, 3, 4, 4, 5]

# The storage cost for six periods

STORAGE_COST = [1, 1, 1, 1, 1, 1]

# The set up cost for six periods

SETUP_COST = [12, 15, 30, 23, 19, 45]

# Set of periods

PERIODS = range(len(DEMAND))

16



 17

Strength of Formulation for Lot-sizing (cont’d)

Optimal Total Cost is: 171.42016761

Period 0 : 13 units produced, 7 units stored, 6 units sold

0.38235294 is the value of the fixed charge variable

Period 1 : 0 units produced, 0 units stored, 7 units sold

0.0 is the value of the fixed charge variable

Period 2 : 4 units produced, 0 units stored, 4 units sold

0.19047619 is the value of the fixed charge variable

Period 3 : 6 units produced, 0 units stored, 6 units sold

0.35294118 is the value of the fixed charge variable

Period 4 : 11 units produced, 8 units stored, 3 units sold

1.0 is the value of the fixed charge variable

Period 5 : 0 units produced, 0 units stored, 8 units sold

0.0 is the value of the fixed charge variable

• In period 0, it appears that we produced the full amount required to
satisfy demand, but the fixed charge variable doesn’t have value 1.

• What is happening here?

17



 18

Strength of Formulation for Lot-sizing (cont’d)

Let’s take a more detailed look:

production in period 0 for period 0 : 2.2941176

production in period 0 for period 1 : 2.6764706

production in period 0 for period 2 : 1.5294118

production in period 0 for period 3 : 2.2941176

production in period 0 for period 4 : 1.1470588

production in period 0 for period 5 : 3.0588235

What is the problem?

18



 19

An Ideal Formulation for Lot-sizing

• We are only requiring that we have enough units on hand at time t to
satisfy demand at time t.

• This was enough in the old formulation since units were not reserved for
specific time periods.

• Now, some of the units we have on hand at time t may be reseved for
sale in a future period.

• We can further strengthen the formulation by adding the constraint

t∑
i=1

qit ≥ dt for t = 1, . . . , T

• In fact, adding these additional constraints makes the formulation ideal.

• If we project into the original space, we will get the convex hull of
solutions to the first formulation.

• How would we prove this?

19



 20

Geometry of Extended Formulation

• By adding variables, we are “lifting” the formulation P into a higher-
dimensional space to obtain Q.

• When we project Q back into the original space, the resulting projected
formulation is tighter, i.e., projx(Q) ⊂ P.

• It is possible that the number of inequalities needed to describe Q is
actually smaller than the number needed to describe P.

• In some cases, the extended formulation is compact, whereas there is no
compact formulation in the original space.

20



 21

Contrast with Linear Programming

• In linear programming, the same problem can also have multiple
formulations.

• In LP, however, conventional wisdom is that bigger formulations take
longer to solve.

• In IP, this conventional wisdom does not hold.

• We have already seen two examples where it is not valid.

• Generally speaking, the size of the formulation does not determine how
difficult the IP is.

21


