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Computational Discrete Optimization

• Before going any deeper into the theory of integer optimization, we now
delve into how integer optimization problems are solved in practice.

• In this lecture, we introduce branch and bound, the most widely used
algorithmic framework for solving MILPs in practice.

• Branch and bound is not so much a complete algorithm as a framework.

• A particular implementation consists of a collection of specific decision-
making procedures bound together by a control mechanism.

• A wide variety of different algorithms can be obtained by implementing
the constituent procedures in different ways.

• The most fundamental constituent procedures are

– A method for obtaining upper and lower bounds on the value of the
optimal solution (usually by solving a relaxation or dual); and

– A method for producing a valid disjunction violated by a given
(infeasible) solution.

• In the next few lectures, we will examine the details of how these types
of procedures can be implemented.
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Branch and Bound

• Branch and bound is the most widely used algorithmic framework for
solving MILPs.

• It is a recursive, divide-and-conquer approach.

• Suppose S is the feasible set for an MILP and we wish to compute
maxx∈S c⊤x.

• Consider a partition of S into subsets S1, . . .Sk. Then

max
x∈S

c⊤x = max
1≤i≤k

max
x∈Si

c⊤x

.• In other words, we can optimize over each subset separately.

• Idea: If we can’t solve the original problem directly, we might be able to
solve the smaller subproblems recursively.

• Dividing the original problem into subproblems is called branching.

• Taken to the extreme, this scheme is equivalent to complete enumeration.
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A Generic Branch-and-Bound Algorithm

1: Add root optimization problem S0 := S to a priority queue Q.
2: Set global upper bound U ←∞ and global lower bound L← −∞
3: Set T := ∅ (the set of terminal nodes).
4: while U > L do
5: Remove the highest priority subproblem Si from Q.
6: Bound Si to obtain upper bound U(i) and lower bound L(i).
7: if U(i) > L then
8: Branch to create child subproblems Si1, . . . ,Sik of subproblem Si

by partitioning Si
9: Add Si1, . . . ,Sik to Q with initial bounds U(ij) = U(i) and

L(ij) = −∞ for 1 ≤ j ≤ k.
10: else
11: Add Si to T .
12: end if
13: Set U ← maxk∈Q∪T U(k).
14: Set L← max{L(i), L}.
15: end while
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Missing Pieces

• What is the “priority” by which the subproblems are ordered?

• How do we get the upper and lower bounds?

• How do we partition a given subproblem?

• Is this algorithm guaranteed to terminate?

• Will it produce the optimal solution?

• Is the algorithm “efficient”?
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Visualizing Branch and Bound

• It will be useful to be able to visualize the evolution of the branch-and-
bound algorithm.

• Due to the recursive nature of the algorithm, the collection of subproblems
produced can be thought of as forming a branch-and-bound tree.

• Each subproblem is connected to

– its parent, the subproblem that was partitioned to yield it, and
– its children, the subproblems resulting from further partitioning.

• The algorithm evolves by searching this dynamically generated tree.

• The search inevitably involves many dead ends and efficiency is improved
by avoiding as many of them as possible.

• For theoretical reasons, it is conjectured that there is no way to completely
avoid such dead ends.
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Branch and Bound Tree
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The Gap

• Throughout the algorithm, we maintain a global upper bound U and a
global lower bound L.

– The lower bound comes from the current incumbent (the best feasible
solution found so far).

– The upper bound is that of the candidate node with the best bound.

• Optimality of the current incumbent is theoretically proved when U = L,
but we usually terminate when Q = ∅ (this guarantees U = L).

• As the algorithm proceeds, the relative optimality gap

|U − L|
max{|L|, |U |}

(or simply the gap) gives us a quality guarantee for the incumbent.

• Even when branch-and-bound terminates early (due to time constraints),
it provides this guarantee.

• This is what makes the method exact (as opposed to heuristic).
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Evolution of the Algorithm

• As the algorithm proceeds, the gap decreases until reaching zero.

• The goal of the algorithm is to decrease this gap as quickly as possible.

• Decreasing the gap involves improving both the upper and lower bounds,
which introduces important tradeoffs.

• It is tempting to view the current gap or its evolution as an indication of
progress, but its predictive power is limited.
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Figure 1: Evolution of the gap
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Importance of Disjunction

• As we know, the difficulty in solving an integer optimization problem
arises from the requirement that certain variables take on integer values.

• Such requirements are equivalent to logical disjunctions, constraints of
the form

x ∈
⋃

1≤i≤k

Xi

for Xi ⊆ Rn, i ∈ 1, . . . , k.

• The integer variables in a given formulation may represent logical
conditions that were originally expressed in terms of disjunction.

• In fact, the MILP Representability Theorem tells us that the feasible
region of any MILP can be expressed in the form

S =
k⋃

i=1

Pi + intcone{r1, . . . , rt},

for some appropriately chosen polytopes P1, . . . ,Pk and vectors
r1, . . . , rt ∈ Zn (recall the proof that conv(S) is a rational polyhedron).
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Two Conceptual Reformulations

• From what we have seen so far, we have two conceptual reformulations
of a given integer optimization problem.

• The first is in terms of disjunction:

max

{
c⊤x | x ∈

(
k⋃

i=1

Pi + intcone{r1, . . . , rt}
)}

(DIS)

• The second is in terms of valid inequalities:

max
{
c⊤x | x ∈ conv(S)

}
(CP)

where S is the feasible region.

• In principle, if we had a method for generating either of these
reformulations, this would lead to a practical method of solution.

• Unfortunately, these reformulations are necessarily of exponential size in
general, so there can be no way of generating them efficiently.
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Valid Disjunctions

• In practice, we dynamically generate parts of the reformulations (CP) and
(DIS) in order to obtain a proof of optimality for a particular instance.

• We can think of the concept of a valid inequality as arising from our
desire to approximate conv(S) (the feasible region of (CP)).

• Similarly, we also have the concept of valid disjunction, arising from a
desire to approximate the feasible region of (DIS).

Definition 1. Let {Xi}ki=1 be a collection of subsets of Rn. Then if⋃
1≤i≤kXi ⊇ S, the disjunction associated with {Xi}ki=1 is said to be

valid for an MILP with feasible set S.
Definition 2. If {Xi}ki=1 is a disjunction valid for S and Xi is
polyhedral for all i ∈ {1, . . . , k}, then we say the disjunction is linear.

Definition 3. If {Xi}ki=1 is a disjunction valid for S and Xi ∩Xj = ∅
for all i, j ∈ {1, . . . , k}, we say the disjunction is partitive.

Definition 4. If {Xi}ki=1 is a disjunction valid for S that is both linear
and partitive, we call it admissible.
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Branching in Branch and Bound

• Branching is achieved by selecting an admissible disjunction {Xi}ki=1 and
using it to partition S, e.g., Si = S ∩Xi.

• We only consider linear disjunctions so that the subproblem remain
MILPs after branching.

• The reason for choosing partitive disjunctions is self-evident.

• The way this disjunction is selected is called the branching method and
is a topic we will examine in some depth.

• Generally speaking, we want x∗ ̸∈ ∪1≤i≤kXi, where x
∗ is the (infeasible)

solution produced by solving the bounding problem.

• In this case, we say the disjunction is violated by x∗.

• A typical disjunction is

X1 = {x ∈ Rn | xj ≤ ⌊x∗
j⌋}, (1)

X2 = {x ∈ Rn | xj ≥ ⌈x∗
j⌉}, (2)

where x∗ ∈ argmaxx∈P c⊤x.
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Bounding in Branch and Bound

• The bounding problem is a problem solved to obtain a bound on the
optimal solution value of a subproblem maxx∈Si

c⊤x.

• Typically, the bounding problem is either a relaxation or a dual of the
subproblem (these concepts will be defined formally in Lecture 8).

• Solving the bounding problem serves two purposes.

– In some cases, the solution x∗ to the relaxation may actually be a
feasible solution (x∗ ∈ S), in which case c⊤x∗ is a global lower bound.

– Bounding enables us to inexpensively compute a bound U(i) on the
optimal solution value of subproblem i.

• If U(i) ≤ L, then Si can’t contain a solution strictly better than the best
one found so far.

• Thus, we may discard or prune subproblem i.
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Constructing a Bounding Problem

• There are many ways to construct a bounding problem and this will be
the topic of later lectures.

• The easiest of the these is to form the LP relaxation maxP∩Rn
+∩Xi

,
obtained by dropping the integrality constraints.

• For the rest of the lecture, assume all variables have finite upper and
lower bounds.
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LP-based Branch and Bound: Initial Subproblem

• In LP-based branch and bound, we first solve the LP relaxation of the
original problem. The result is one of the following:

1. The LP is infeasible ⇒ MILP is infeasible.
2. We obtain a feasible solution for the MILP ⇒ optimal solution.
3. We obtain an optimal solution to the LP that is not feasible for the

MILP ⇒ upper bound.

• In the first two cases, we are finished.

• In the third case, we must branch and recursively solve the resulting
subproblems.
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Branching in LP-based Branch and Bound

• In LP-based branch and bound, the most commonly used disjunctions
are the variable disjunctions, imposed as follows:

– Select a variable i whose value x̂i is fractional in the LP solution.
– Create two subproblems.
∗ In one subproblem, impose the constraint xi ≤ ⌊x̂i⌋.
∗ In the other subproblem, impose the constraint xi ≥ ⌈x̂i⌉.

• What does it mean in a 0–1 problem (problem for which all variables
take on only values 0 or 1)?
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The Geometry of Branching

Figure 2: The original feasible region
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The Geometry of Branching (cont’d)

Figure 3: Branching on disjunction x1 ≤ 2 OR x1 ≥ 3
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Continuing the Algorithm After Branching

• After branching, we solve each of the subproblems recursively.

• Now we have an additional factor to consider.

• As mentioned earlier, if the optimal solution value to the LP relaxation
is smaller than the current lower bound, we need not consider the
subproblem further.

• This is the key to the efficiency of the algorithm.

• Terminology

– If we picture the subproblems graphically, they form a search tree.
– Each subproblem is linked to its parent and eventually to its children.
– Eliminating a problem from further consideration is called pruning.
– The act of bounding and then branching is called processing.
– A subproblem that has not yet been considered is called a candidate

for processing.
– The set of candidates for processing is called the candidate list.
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The Geometry of Branching

Figure 4: Branching on disjunction x2 ≤ 4 OR x2 ≥ 5 in Subproblem 2
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LP-based Branch and Bound Algorithm

1. To start, derive a lower bound L using a heuristic method.

2. Put the original problem on the candidate list.

3. Select a problem Si from the candidate list and solve the LP relaxation
to obtain the bound U(i).

• If the LP is infeasible ⇒ node can be pruned.
• Otherwise, if U(i) ≤ L ⇒ node can be pruned.
• Otherwise, if U(i) > L and the solution is feasible for the MILP ⇒
set L← U(i).
• Otherwise, branch and add the new subproblem to the candidate list.

4. If the candidate list in nonempty, go to Step 2. Otherwise, the algorithm
is completed.
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Algorithmic Choices in Branch and Bound

• Although the basic algorithm is straightforward, the efficiency of it in
practice depends strongly on making good algorithmic choices.

• These algorithmic choices are made largely by heuristics that guide the
algorithm.

• Basic decisions to be made include

– The bounding method(s).
– The method of selecting the next candidate to process.
∗ “Best-first” chooses the candidate with the highest upper bound.
∗ Under mild conditions, this rule minimizes the size of the tree
(why?).
∗ There may be practical reasons to deviate from this rule.

– The method of branching.
∗ Branching wisely is extremely important.
∗ A “poor” branching decision can slow the algorithm significantly.

• We will cover the last two topics in more detail in later lectures.
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A Thousand Words

Figure 5: Tree after 400 nodes

Note that we are minimizing here!
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A Thousand Words

Figure 6: Tree after 1200 nodes
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A Thousand Words

Figure 7: Final tree
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Global Bounds

• The pictures show the evolution of the branch and bound process.

• Nodes are pictured at a height equal to that of their lower bound (we
are minimizing in this case!!).

– Red: candidates for processing/branching
– Green: branched or infeasible
– Turquoise: pruned by bound (possibly having produced a feasible

solution) or infeasible.

• The red line is the level of the current best solution (global upper bound).

• The level of the highest red node is the global lower bound.

• As the procedure evolves, the two bounds grow together.

• The goal is for this to happen as quickly as possible.
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Tradeoffs

• We will see that there are many tradeoffs to be managed in branch and
bound.

• Note that in the final tree:

– Nodes below the line were pruned by bound (and may or may not have
generated a feasible solution) or were infeasible.

– Nodes above the line were either branched or were infeasible or
generated an optimal solution.

• There is a tradeoff between the goals of moving the upper and lower
bounds

– The nodes below the line serve to move the upper bound.
– The nodes above the line serve to move the lower bound.

• It is clear that these two goals are somewhat antithetical.

• The search strategy has to achieve a balance between these two
antithetical goals.
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Tradeoffs in Practice

• In a practical implementation, there are many more choices and tradeoffs
than those we have indicated so far.

• The complexity of the problem of optimizing the algorithm itself is
immense.

• We have additional auxiliary methods, such as preprocessing and primal
heuristics that we can choose to devote more or less effort to.

• We also have the choice of how much effort to devote to choosing a
good candidate for branching.

• Finally, we have the choice of how much effort to devote to proving a
good bound on the subproblem.

• It is the careful balance of the levels of effort devoted to each of these
algorithmic processes the leads to a good algorithmic implementation.

29


