Integer Programming

Lecture 8



What is Duality?

Duality is a central concept from which much theory and computational
practice emerges In optimization.

Many of the well-known “dualities” that arise in optimization are closely
connected.

The following roughly “isomorphic” duality concepts will all appear.

— Sets: Projection/complement, intersection/union

— Conic duality: Cones and their duals, convexity/nonconvexity

— Farkas duality: Theorems of the alternative, empty/non-empty

— Complexity: Languages and their complements (NP vs. co-NP)

— Quantifier duality: Existential versus universal quantification

— De Morgan duality: Conjunction versus disjunction

— Weyl-Minkowski duality: V representation versus H representation
— Polarity: Optimization versus separation

— Dual problems: Primal and dual problems in optimization

— Inverses: Functions and inverses, inverse optimization inverses



Setup

e We focus on mixed integer linear optimization problems, although the
concepts we discuss are much more general.

e Note we are switching to the equality form of constraints (the standard
form for LPs) and minimization for this lecture.

e [hus, we consider the problem

zip = minc' z, (MILP-EQ)

reS

where
S={xecZ, xR | Az = b},

with c € Q", A € Q™*™, and b € Q™.



Economic Interpretation

The economic viewpoint interprets the variables as representing possible
activities in which one can engage at specific numeric levels.

We interpret the constraints as representing available resources so that
the i row a’ of A represents the rate at which resource i will be
consumed by each activity.

Similarly, the 7' column A; of A represents the rate at which activity j
consumes each resource.

The feasible set S represents combinations of activities that can engaged
in simultaneously, given the vector of resources b.

The space in which § and the vectors of activities live is the primal
space.



The Dual Space

We may also consider the problem from the point of view of the resources
in order to ask questions such as

— How much are the resources “worth” in the context of the economic
system described by the problem?

— What is the marginal economic profit contributed by each activity?

— What new activities would provide additional profit?

The dual space is associated with resources and and is the space in which
we can frame these questions.

The dual space has a relatively straightforward economic interpretation
when the activity levels exist on a continuum (the LP case).

The dual space is is not as easy to interpret once we introduce the idea
that the activity levels must be from a discrete set.



Quick Review of Concepts from LP

Recall that there always exists an optimal solution that is basic.
We construct basic solutions by

— Choosing a basis B C {1,...,n} of m linearly independent columns
of A.

— Solving the system Apxp = b to obtain the values of the basic
variables.

— Setting remaining variables to value 0.

If x5 > 0, then the associated basic solution is feasible.

With respect to any basic feasible solution, it is easy to determine the
impact of increasing a given activity.

The reduced cost

_ T 4-1

cj =c; —cgAg Aj.
of (nonbasic) variable j tells us how the objective function value changes
if we increase the level of activity 5 by one unit.

It follows that a basic feasible solution is optimal if and only if the
reduced costs are all non-negative.



Marginal Prices

From the resource (dual) perspective, the quantity u = c, A" is a vector
that tells us the marginal economic value of each resource.

In other words, chglAb is the marginal amount by which the objective
value would change if we augmented the available resources by Ab.

Thus, v can be interpreted as a vector of (linear) prices for the resources,
with «'b the economic worth of the bundle b.

This give us an economic interpretation of strong duality.

There exist prices u* for which the value (u*) ' b of the bundle of resources
b is the same as the profit ¢' z* from the optimal activity vector z* € S.

In economics, u* are the market-clearing prices.



The LP Value Function

To construct a duality theory for MILPs, we need a more general notion
of “dual prices.”

The first step in understanding this more general point of view is to
consider the so-called value function, defined by

T
= min c zx, LPVF
oLp(P) in ( )

for a given 3 € R™, where S(3) = {z € R} | Az = §}.
We let ¢Lp<5) =0 if g e)l= {5 c R™ | 8(6) = @}

The value function returns the optimal value as a parametric function of
the right-hand side vector, which represents available resources.
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Example 1
orr(5)

Figure 1:

-1.5

Example (cont’d)

=min  6y; + Ty2 + 5y3
st. 2y1 —Tya+ys=p
Y1,Y2,Ys3, S R—i—

Value Function for Example 1

D50)

1.5

0.5
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Economic Interpretation of the Value Function

Consider a member v € O¢ p(b) of the subdifferential of ¢ p at b.

Since ¢ p is convex, its (sub)gradients are linear under-estimators and
can be used to derive bounds on the optimal value for any g € R™.

The quantity u' Ab represents (an estimate of) the marginal change in
the optimal value if we change the resource level by Ab.

In other words, u can be interpreted as a vector of the marginal values
of the resources.

The (sub)gradient u of ¢ thus seems to play a role similar to a solution
to the LP dual.

This is not a coincidence!

The subdifferential at 0 is the feasible set for the LP dual and the
subdifferential at b is the set of optimal solutions of the associated dual!

We can observe these properties in Example 1.

— The dual solutions of this LP are exactly the subdifferential at 0.
— The gradients are the optimal dual solutions for 3 # 0.
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The Dual Optimization Problem
e For convex functions f, the subdifferential at x is exactly the set of linear
underestimators that are tangent to f at z.

e We can thus determine a (sub)gradient of ¢ p at b using optimization:
find the subgradient that yields the maximum bound at b.

e Note that for any y € R™, we have

m>18 c'e+p'(b—Az)] < c'a* +p'(b— Az¥)
= c'2*

= ¢rp(b)

and thus we have a lower bound on ¢ p(b).

e With some simplification, we obtain a more explicit form for this bound.

T Ty _ T T T
min lc'z+p (b— Ax)] v b—|—1:”6n218(c pu Az

{,LLTb, ifc' —p'A>0",

—00, otherwise,
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The Dual Problem (cont’d)

e |f we now interpret this quantity as a function

:u—rﬁa if CT o :uTA 2 OTa

—00, otherwise,

g(u, B) = { (1)

with parameters 1 and 3, then for fixed u € R™ such that ¢! > u' A.
g(u, 3) is a linear under-estimator of ¢ p.

e An LP dual problem is obtained by computing the u € R™ that gives
the under-estimator yielding the strongest bound for a fixed b.

b) = b'
L{rel%;gg(u) max b p

st pl A<c! (LPD)

e (LPD) is the usual LP dual problem and we have shown that its optimal
solutions are the (sub)gradient of ¢ p at b.
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Combinatorial Representation of the LP Value Function

e Note that the feasible region of (LPD) does not depend on b.

e From the fact that there is always an extremal optimum to (LPD), we
conclude that the LP value function can be described combinatorially.

¢rp(B) = I{nggﬁ UT5 (LPVF)

for 5 € R™, where £ is the set of extreme points of the dual polyhedron
D={ucR™|u'A<c'} (assuming boundedness).

e Alternatively, £ is also in correspondence with the dual feasible bases of

A.

€= {cpAy" | E is the index set of a dual feasible bases of A} (2)

e Thus, we see that epi(¢p) is a polyhedral cone whose facets correspond
to dual feasible bases of A.
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What is the Importance in This Context?

The dual problem is important is because it gives us a set of optimality
conditions.

For a given b € R™, whenever we have

- z* e S(b),
— u €D, and

—cla*=u'b

then =™ is optimal!

This means we can write down a set of constraints involving the value
function that ensure optimality.

This set of constraints can then be embedded inside another optimization
problem.
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The MILP Value Function

e \We now generalize the notions seen so far to the MILP case.

e The value function associated with the base instance (MILP-EQ) is

o(f) = min c¢'z

reS(B)

for 3 € R™, where S(8) = {x € ZI. x R"" | Az = B}.
e Again, we let ¢(8) =0 if feQ={FeR™|S(B) =0}

(VF)
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Example

Example 2

: 7
¢(B) = min 31 + §$2 + 3x3 + 614 + Tx5 + 24

s.t. 621 + dxg — 4x3+ 204 — (x5 + 26 = 5

T1,To, T3 € Ly, Tq,x5,Te € Ry

2
= =

-
o

(8] [ S o ] ~ @ w

-9 -8 -7 6 -5 4 -3 -2 - 1 2 3 4 5 6 7 8 9

The structure of this function is inherited from two related functions.
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Continuous and Integer Restriction of an MILP
Consider the general form of the value function

() =minec; x; + chre
s.t. Ajxr + Acxe = B, (VF)

x € Z:? X RZTTQ

The structure is inherited from that of the continuous restriction:

dc(f) =min cgzr;g

S.t. AC:CC = 5, (CR)
ro € ]Rj_g_m
for C'={ry+1,...,n2} and the similarly defined integer restriction:
¢1(B) = min ¢; x;
s.t. Arxr =0 (IR)
Ty € Z:?

fOI’I:{l,...,TQ}.
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Value Function of Integer Restriction (Example 2)

Example 3

7
Qb(/B) = min 3x; + 5332 + 3x3 + 64 + Tx5 + D

s.t.

6x1 + Sxo — 4x3 + 224 — Tx5 + 6 =

T1, T2, T3, T4, T5, Te € Z—|—

Z pip (b)

22
20
18

L 16 ]

®  PILPrecourse
24 — —  PILP recours

with equality constraint

e with inequality constraint
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Value Function of Continuous Restriction (Example 2)

Example 4
¢c(B) = min 6y; + Ty2 + 5y3

st. 2y1 — Ty2 +y3 =
Y1,Y2,Y3 S R-l—

Dp0)

1.5

0.5

-1.5 -1 =-0.5 0.5 1 1.5
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General Properties of the MILP Value Function

The value function is subadditive, non-convex, lower semi-continuous, and
piecewise polyhedral.

Example 5
¢(B) ' 5 + 0
= min £y — =T —x
1 4 2 4 3
1
st. —x1 — Ty + —x3 = 8 (Ex2.MILP)
4 2
T, T2 € Z+, xr3 & R+
[]
4
|
, /{ 1
Y / ]
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Points of Strict Local Convexity (Finite Representation)
Example 6

(b)

1

P [#] s e (=11 =4 o =]

b

-4 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 & 7 & 4%
xj|=[nm] x;=[UUD] x;=[DID] 1:1=|'IDEI]

Theorem 1. Under the assumption that {3 € R™2 | ¢;(B) < oo} is finite]
there exists a (minimal) finite set S such that

P(B) = gé%{chf +¢c(B— Arzr)}.
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Generalized Dual Problem

o A dual function F' : R™ — R is one that satisfies F'(3) < ¢(5) for all
g eR™,

e How to select such a function?

e We may choose one that is easy to construct/evaluate or for which
F(b) = ¢(b).

e This results in the following generalized dual associated with the base
instance (MILP-EQ).

max {F'(b) : F(6) < ¢(8), 6 € R", F € T"} (D)

where Y™ C {f | f: R"—R}

e We call F'* strong for this instance if /'™ is a feasible dual function and
F*(b) = ¢(b).

e This dual instance always has a solution F'* that is strong if the value
function is bounded and Y™ = {f | f : R™"—=R}. Why?
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Example: LP Relaxation Dual Function

e The simplest dual function for any MILP is the value function of its LP
relaxation.

e |t is easy to show that such a function is the convex envelope of the
MILP value function.

e |t is the strongest convex dual function we can construct.

N— N N ooon W

S
N[
[\O/[IN
DO
NN
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The Subadditive Dual

By considering that

F(B)<¢(B)VBER™ <= F(B)<c' T,z €S(P)Vp € R
— F(Az)<c'z,ze€Z xR},

the generalized dual problem can be rewritten as
max {F(b) : F(Azx) < cx, v € Z, xRI™", Fe Y™},
Can we further restrict T and still guarantee a strong dual solution?

e T he class of linear functions? NO!
e T he class of convex functions? NO!

e The class of Subadditive functions? YES!

for details.
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The Subadditive Dual
e Let a function F' be defined over a domain V. Then F' is subadditive if
F(Ul) -+ F(Ug) > F(’Ul -+ UQ)VUl, Vo, V1 + vy € V.
e Note that the value function z is subadditive over (2. Why?

o If Y = 1" = {F is subadditive | F' : R™—=R, F/(0) = 0}, we can
rewrite the dual problem above as the subadditive dual

max  F'(b)
F(@)<c; j=1,..,r
F(@)<c¢; j=r+1,..,n, and

Fel™,
where the function F' is defined by

F(B) = limsup F(9p)

§—0t 0

V3 e R™.

e Here, F is the upper [-directional derivative of F at zero.
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Strong Duality

Theorem 2. [Strong Duality Theorem] If the primal problem (resp., the
dual) has a finite optimum, then so does the subadditive dual problem
(resp., the primal) and they are equal.

Outline of the Proof. Show that the value function ¢ or an extension of
¢ is a feasible dual function.

e We can generalize other properties obtained using LP duality.

— Complementary slackness conditions
— Farkas Lemma



28

Optimality Conditions

e One reason the dual problem is important is because it gives us a set of
optimality conditions.

Theorem 3. [Optimality conditions for (MILP-EQ)] If z* € S, F* is
feasible for (D), and c¢'xz* = F*(b), then z* is an optimal solution
to (MILP-EQ) and F* is an optimal solution to (D).

e These are the optimality conditions achieved in the branch-and-bound
algorithm for MILP that prove the optimality of the primal solution.

e [he branch-and-bound tree encodes a solution to the dual.
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Dual Functions from Branch and Bound

e Recall that a dual function F': R™ — R is one that satisfies F'(3) < ¢(5)
for all B € R™.

e Observe that any branch-and-bound tree yields a lower approximation of
the value function.
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Dual Functions from Branch-and-Bound

Let T' be set of the terminating nodes of the tree. Then in a terminating
node t € T" we solve:

¢ (f) = min ¢’ x
s.t. Ax =[5, (BB.VF)
<< ut,:z: >0
By LP duality, we then have that:

¢'(B) = max 7' B + w'l* + 7T’
st. A+l 47t <c' (BB.LP.D)
m>0,7m<0
Finally, we obtain the following dual function, which is strong at b.
T o t ~t1t t
¢, p(B) = grg;;wﬁ (8) = min{#"5 + &'1" + 7'u'} (BB.D)

where (Wt,ﬁt 7') is an optimal solution to the dual (BB.LP.D) at node t.
Since qb »(0) = ¢(b), this proves optimality of the final incumbent.
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Example: Dual Function from Branch and Bound

Recall the following value function associated with an MILP from earlier.

¢(B) = min 6x1 + 4zg + 3x3 + 4y + S5 + T6
s.t. 2x1 + 5xo — 223 — 224 + D5 + g = B

xT1,To, T3 € Ly, X4,T5,Te € R
Suppose we evaluate ¢(5.5) by solving the instance with fixed right-hand
side by LP-based branch-and-bound.

Solving the root LP relaxation, we obtain a solution in which x5 = 1.1 and
the optimal dual multipler for the single constraint is c3/as = 4/5 = 0.8.

We therefore branch on variable x5 and obtain two subproblems, whose
LP relaxations have the variable bounds o < 1 and x5 > 2, respectively.

The problem is solved after this single branching, since cg/ag < c¢1/a1 so
that 1 = x3 = 0 in any optimal solution when 5 > 0.
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Example: Dual Function from Branch and Bound

e To see how the branch-and-bound tree yields a dual function in this

particular case, we have the following dual solutions.
T T 1

t s s T

0 0.8 4.4 0.0 4.6 5.6 1.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0
1 1.0 4.0 0.0 5.0 6.0 0.0 2.0 0.0 —1.0 0.0 0.0 0.0 0.0
2 —1.5 9.0 11.5 0.0 1.0 12.5 14.5 0.0 0.0 0.0 0.0 0.0 0.0

e Note that we have added the bound constraints explicitly and the upper
bounds on all variables are initially taken to be a “big-M" value.

e Then, the following are the nodal dual functions.

¢ (B) = 0.88
¢? (8) = —1.53 423

e The initial (global) dual function in the root node is @TO = @gp.

e After branching, the (global) dual function is ?Tl = min{@iP,@iP}.
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Example: Visualizing the Dual Function

14r Node 0
Node 1
121 Node 2
Node 1 Z
10F
Node 0
8 L
6 =
Node 2
4t
2 L
O e’
] ] ] ] ] ] B
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Strengthening the Dual Function

The dual function can be strengthened by noting that the dual feasible
region is the same for all nodes.

We can therefore approximate the nodal value function by taking a max
over all known dual solutions.

Then we obtain

min{max{0.83,5 — 1, —1.58}, max{0.83, 6 - M, —1.58 + 23} }

Note the M, which is present because 72 = —1 and the implicit upper

bound on x5 is M in Node 1.

By evaluating ¢ at a different right-hand side, but using the same tree
as a starting point, we can begin to approximate the full value function.

On the next slide, we show how evaluating at multiple right-hand sides
can further improves the approximation.
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Example:
Node 0
0
QLP =0.83
T = 0 T2 Z 1
Node 1 Node 2

b ,=B ¢ ,=-158+115

Node 1 Node 2
o, =8 ¢f, =—158+115

Node 3 Node 4
$L=B-1 ¢, =-158+23

Iterative Refinement

Dy plP)
16
14
12
. Mode 1
10 _Node 3
8 g . Node 4
S
6
4
2 g
m‘\\\\
4 6 N 10 B
.
-2 S
" Node 2

Recall again that these pictures are for minimization!
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Tree Representation of the Value Function

Continuing the process, we eventually generate the entire value function.

Consider the strengthened dual

6"(8) = mincp, 27, + d 1, (6 — Aral,),

I; is the set of indices of fixed variables, x’}t are the values of the

corresponding variables in node t.

715\7\175 is the value function of the linear optimization problem at node ¢,
including only the unfixed variables.

Theorem 4. Under the assumption that {5 € R™2 | ¢;(6) < oo}
1s finite, there exists a branch-and-bound tree with respect to which

¢ =9
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Example of Value Function Tree

Node 0
Node 1 Node 8
Node 2 Node 9
Node 3 Node 10
max{—24, 8} N max{f} + 5,97 = =28 — 1} N
Node 4 Node 11
max{—26 + 14,5 — 1} o —QA/NWM\ZQ> 3 max{f + 10, g9 = -2 — 2} %
Node 6 Node 7 Node 13 Node 14
max{26 + 28,8 — 2} —24+ 42 max{8 + 15, -238 — 3} 25 =4 ode 2> 5
Node 15
max{8 + 20, —23 — 4} s %> 6
Node 17 Node 18

max{f8 + 25,—26 -5} B +30
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