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What is Duality?

• Duality is a central concept from which much theory and computational
practice emerges in optimization.

• Many of the well-known “dualities” that arise in optimization are closely
connected.

• The following roughly “isomorphic” duality concepts will all appear.

– Sets: Projection/complement, intersection/union
– Conic duality: Cones and their duals, convexity/nonconvexity
– Farkas duality: Theorems of the alternative, empty/non-empty
– Complexity: Languages and their complements (NP vs. co-NP)
– Quantifier duality: Existential versus universal quantification
– De Morgan duality: Conjunction versus disjunction
– Weyl-Minkowski duality: V representation versus H representation
– Polarity: Optimization versus separation
– Dual problems: Primal and dual problems in optimization
– Inverses: Functions and inverses, inverse optimization inverses

2



 3

Setup

• We focus on mixed integer linear optimization problems, although the
concepts we discuss are much more general.

• Note we are switching to the equality form of constraints (the standard
form for LPs) and minimization for this lecture.

• Thus, we consider the problem

zIP = min
x∈S

c⊤x, (MILP-EQ)

where
S = {x ∈ Zr

+ × Rn−r
+ | Ax = b},

with c ∈ Qn, A ∈ Qm×n, and b ∈ Qm.
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Economic Interpretation

• The economic viewpoint interprets the variables as representing possible
activities in which one can engage at specific numeric levels.

• We interpret the constraints as representing available resources so that
the ith row ai of A represents the rate at which resource i will be
consumed by each activity.

• Similarly, the jth column Aj of A represents the rate at which activity j
consumes each resource.

• The feasible set S represents combinations of activities that can engaged
in simultaneously, given the vector of resources b.

• The space in which S and the vectors of activities live is the primal
space.
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The Dual Space

• We may also consider the problem from the point of view of the resources
in order to ask questions such as

– How much are the resources “worth” in the context of the economic
system described by the problem?

– What is the marginal economic profit contributed by each activity?
– What new activities would provide additional profit?

• The dual space is associated with resources and and is the space in which
we can frame these questions.

• The dual space has a relatively straightforward economic interpretation
when the activity levels exist on a continuum (the LP case).

• The dual space is is not as easy to interpret once we introduce the idea
that the activity levels must be from a discrete set.
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Quick Review of Concepts from LP

• Recall that there always exists an optimal solution that is basic.

• We construct basic solutions by

– Choosing a basis B ⊆ {1, . . . , n} of m linearly independent columns
of A.

– Solving the system ABxB = b to obtain the values of the basic
variables.

– Setting remaining variables to value 0.

• If xB ≥ 0, then the associated basic solution is feasible.

• With respect to any basic feasible solution, it is easy to determine the
impact of increasing a given activity.

• The reduced cost
c̄j = cj − c⊤BA

−1
B Aj.
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  of  (nonbasic)  variable  j  tells  us  how  the  objective  function  value  changes
if  we  increase  the  level  of  activity  j  by  one  unit.

• It  follows  that  a  basic  feasible  solution  is  optimal  if  and  only  if  the 
reduced  costs  are  all  non-negative.
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Marginal Prices

• From the resource (dual) perspective, the quantity u = c⊤BA
−1
B is a vector

that tells us the marginal economic value of each resource.

• In other words, c⊤BA
−1
B ∆b is the marginal amount by which the objective

value would change if we augmented the available resources by ∆b.

• Thus, u can be interpreted as a vector of (linear) prices for the resources,
with u⊤b the economic worth of the bundle b.

• This give us an economic interpretation of strong duality.

• There exist prices u∗ for which the value (u∗)⊤b of the bundle of resources
b is the same as the profit c⊤x∗ from the optimal activity vector x∗ ∈ S.

• In economics, u∗ are the market-clearing prices.
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The LP Value Function

• To construct a duality theory for MILPs, we need a more general notion
of “dual prices.”

• The first step in understanding this more general point of view is to
consider the so-called value function, defined by

ϕLP (β) = min
x∈S(β)

c⊤x, (LPVF)

for a given β ∈ Rm, where S(β) = {x ∈ Rn
+ | Ax = β}.

• We let ϕLP (β) = ∞ if β ∈ Ω = {β ∈ Rm | S(β) = ∅}.

• The value function returns the optimal value as a parametric function of
the right-hand side vector, which represents available resources.
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Example (cont’d)

Example 1
ϕLP (β 6) = min y1 + 7y2 + 5y3

s.t. 2y1 − 7y2 + y3 = β

y1, y2, y3,∈ R+

Figure 1: Value Function for Example 1
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Economic Interpretation of the Value Function

• Consider a member u ∈ ∂ϕLP (b) of the subdifferential of ϕLP at b.

• Since ϕLP is convex, its (sub)gradients are linear under-estimators and
can be used to derive bounds on the optimal value for any β ∈ Rm.

• The quantity u⊤∆b represents (an estimate of) the marginal change in
the optimal value if we change the resource level by ∆b.

• In other words, u can be interpreted as a vector of the marginal values
of the resources.

• The (sub)gradient u of ϕ thus seems to play a role similar to a solution
to the LP dual.

• This is not a coincidence!

• The subdifferential at 0 is the feasible set for the LP dual and the
subdifferential at b is the set of optimal solutions of the associated dual!

• We can observe these properties in Example 1.

– The dual solutions of this LP are exactly the subdifferential at 0.
– The gradients are the optimal dual solutions for β ̸= 0.
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The Dual Optimization Problem

• For convex functions f , the subdifferential at x is exactly the set of linear
underestimators that are tangent to f at x.

• We can thus determine a (sub)gradient of ϕLP at b using optimization:
find the subgradient that yields the maximum bound at b.

• Note that for any µ ∈ Rm, we have

min
x≥0

[
c⊤x+ µ⊤(b−Ax)

]
≤ c⊤x∗ + µ⊤(b−Ax∗)

= c⊤x∗

= ϕLP (b)

and thus we have a lower bound on ϕLP (b).

• With some simplification, we obtain a more explicit form for this bound.

min
x≥0

[
c⊤x+ µ⊤(b−Ax)

]
= µ⊤b+min

x≥0
(c⊤ − µ⊤A)x

=

{
µ⊤b, if c⊤ − µ⊤A ≥ 0⊤,

−∞, otherwise,

12



 13

The Dual Problem (cont’d)

• If we now interpret this quantity as a function

g(µ, β) =

{
µ⊤β, if c⊤ − µ⊤A ≥ 0⊤,

−∞, otherwise,
(1)

with parameters µ and β, then for fixed u ∈ Rm such that c⊤ ≥ u⊤A.
g(u, β) is a linear under-estimator of ϕLP .

• An LP dual problem is obtained by computing the u ∈ Rm that gives
the under-estimator yielding the strongest bound for a fixed b.

max
µ∈Rm

g(µ, b) = max b⊤µ

s.t. µ⊤A ≤ c⊤ (LPD)

• (LPD) is the usual LP dual problem and we have shown that its optimal
solutions are the (sub)gradient of ϕLP at b.
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Combinatorial Representation of the LP Value Function

• Note that the feasible region of (LPD) does not depend on b.

• From the fact that there is always an extremal optimum to (LPD), we
conclude that the LP value function can be described combinatorially.

ϕLP (β) = max
u∈E

u⊤β (LPVF)

for β ∈ Rm, where E is the set of extreme points of the dual polyhedron
D = {u ∈ Rm | u⊤A ≤ c⊤} (assuming boundedness).

• Alternatively, E is also in correspondence with the dual feasible bases of
A.

E ≡
{
cBA

−1
E | E is the index set of a dual feasible bases of A

}
(2)

• Thus, we see that epi(ϕLP ) is a polyhedral cone whose facets correspond
to dual feasible bases of A.
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What is the Importance in This Context?

• The dual problem is important is because it gives us a set of optimality
conditions.

• For a given b ∈ Rm, whenever we have

– x∗ ∈ S(b),
– u ∈ D, and
– c⊤x∗ = u⊤b,

then x∗ is optimal!

• This means we can write down a set of constraints involving the value
function that ensure optimality.

• This set of constraints can then be embedded inside another optimization
problem.
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The MILP Value Function

• We now generalize the notions seen so far to the MILP case.

• The value function associated with the base instance (MILP-EQ) is

ϕ(β) = min
x∈S(β)

c⊤x (VF)

for β ∈ Rm, where S(β) = {x ∈ Zr
+ × Rn−r

+ | Ax = β}.

• Again, we let ϕ(β) = ∞ if β ∈ Ω = {β ∈ Rm | S(β) = ∅}.
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Example

Example 2

ϕ(β) = min 3x1 +
7

2
x2 + 3x3 + 6x4 + 7x5 + 5x6

s.t. 6x1 + 5x2 − 4x3 + 2x4 − 7x5 + x6 = β

x1, x2, x3 ∈ Z+, x4, x5, x6 ∈ R+

The structure of this function is inherited from two related functions.
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Continuous and Integer Restriction of an MILP
Consider the general form of the value function

ϕ(β) =min c⊤I xI + c⊤CxC

s.t. AIxI +ACxC = β,

x ∈ Zr2
+ × Rn2−r2

+

(VF)

The structure is inherited from that of the continuous restriction:

ϕC(β) =min c⊤CxC

s.t. ACxC = β,

xC ∈ Rn2−r2
+

(CR)

for C = {r2 + 1, . . . , n2} and the similarly defined integer restriction:

ϕI(β) = min c⊤I xI

s.t. AIxI = β

xI ∈ Zr2
+

(IR)

for I = {1, . . . , r2}.
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Value Function of Integer Restriction (Example 2)

Example 3

ϕ(β) = min 3x1 +
7

2
x2 + 3x3 + 6x4 + 7x5 + 5x6

s.t. 6x1 + 5x2 − 4x3 + 2x4 − 7x5 + x6 = β

x1, x2, x3, x4, x5, x6 ∈ Z+
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Value Function of Continuous Restriction (Example 2)

Example 4
ϕC(β) = min 6y1 + 7y2 + 5y3

s.t. 2y1 − 7y2 + y3 = β

y1, y2, y3 ∈ R+
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General Properties of the MILP Value Function
The value function is subadditive, non-convex, lower semi-continuous, and
piecewise polyhedral.

Example 5

ϕ(β) = min x1 −
3

4
x2 +

3

4
x3

s.t.
5

4
x1 − x2 +

1

2
x3 = β

x1, x2 ∈ Z+, x3 ∈ R+

(Ex2.MILP)
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Points of Strict Local Convexity (Finite Representation)
Example 6

Theorem 1.Under the assumption that {β ∈ Rm2 | ϕI(β) < ∞} is finite,
there exists a (minimal) finite set S such that

ϕ(β) = min
xI∈S

{c⊤I xI + ϕC(β −AIxI)}.
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max {F (b) : F (β) ≤ ϕ(β), β ∈ Rm, F ∈ Υm} (D)

where Υm ⊆ {f | f : Rm→R}

• We call F ∗ strong for this instance if F ∗ is a feasible dual function and
F ∗(b) = ϕ(b).

• This dual instance always has a solution F ∗ that is strong if the value
function is bounded and Υm ≡ {f | f : Rm→R}. Why?

23

Generalized  Dual  Problem

• A  dual  function  F  :  Rm  →  R  is  one  that  satisfies  F  (β  )  ≤  ϕ(β  )  for  all 
β  ∈  Rm.

• How  to  select  such  a  function?

• We  may  choose  one  that  is  easy  to  construct/evaluate  or  for which  
F  (b)  ≈  ϕ(b).

• This  results  in  the  following  generalized  dual  associated  with  the  base 
instance  (MILP-EQ).
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Example: LP Relaxation Dual Function

• The simplest dual function for any MILP is the value function of its LP
relaxation.

• It is easy to show that such a function is the convex envelope of the
MILP value function.

• It is the strongest convex dual function we can construct.
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ϕ(β)
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The Subadditive Dual

By considering that

F (β) ≤ ϕ(β) ∀β ∈ Rm ⇐⇒ F (β) ≤ c⊤x , x ∈ S(β) ∀β ∈ Rm

⇐⇒ F (Ax) ≤ c⊤x , x ∈ Zr
+ × Rn−r

+ ,

the generalized dual problem can be rewritten as

max {F (b) : F (Ax) ≤ cx, x ∈ Zr
+ × Rn−r

+ , F ∈ Υm}.

Can we further restrict Υm and still guarantee a strong dual solution?

• The class of linear functions? NO!

• The class of convex functions? NO!

• The class of Subadditive functions? YES!

for details.
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The Subadditive Dual

• Let a function F be defined over a domain V . Then F is subadditive if
F (v1) + F (v2) ≥ F (v1 + v2)∀v1, v2, v1 + v2 ∈ V .

• Note that the value function z is subadditive over Ω. Why?

• If Υm ≡ Γm ≡ {F is subadditive | F : Rm→R, F (0) = 0}, we can
rewrite the dual problem above as the subadditive dual

max F (b)

F (aj) ≤ cj j = 1, ..., r,

F̄ (aj) ≤ cj j = r + 1, ..., n, and

F ∈ Γm,

where the function F̄ is defined by

F̄ (β) = lim sup
δ→0+

F (δβ)

δ
∀β ∈ Rm.

• Here, F̄ is the upper β-directional derivative of F at zero.
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Strong Duality
Theorem 2. [Strong Duality Theorem] If the primal problem (resp., the
dual) has a finite optimum, then so does the subadditive dual problem
(resp., the primal) and they are equal.

Outline of the Proof. Show that the value function ϕ or an extension of
ϕ is a feasible dual function.

• We can generalize other properties obtained using LP duality.

– Complementary slackness conditions
– Farkas Lemma
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Optimality Conditions

• One reason the dual problem is important is because it gives us a set of
optimality conditions.

Theorem 3. [Optimality conditions for (MILP-EQ)] If x∗ ∈ S, F ∗ is
feasible for (D), and c⊤x∗ = F ∗(b), then x∗ is an optimal solution
to (MILP-EQ) and F ∗ is an optimal solution to (D).

• These are the optimality conditions achieved in the branch-and-bound
algorithm for MILP that prove the optimality of the primal solution.

• The branch-and-bound tree encodes a solution to the dual.
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Dual Functions from Branch and Bound

• Recall that a dual function F : Rm → R is one that satisfies F (β) ≤ ϕ(β)
for all β ∈ Rm.

• Observe that any branch-and-bound tree yields a lower approximation of
the value function.
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Dual Functions from Branch-and-Bound

Let T be set of the terminating nodes of the tree. Then in a terminating
node t ∈ T we solve:

ϕt(β) = min c⊤x

s.t. Ax = β,

lt ≤ x ≤ ut, x ≥ 0

(BB.VF)

By LP duality, we then have that:

ϕt(β) = max πtβ + πtlt + π̄tut

s.t. πtA+ πt + π̄t ≤ c⊤

π ≥ 0, π̄ ≤ 0

(BB.LP.D)

Finally, we obtain the following dual function, which is strong at b.

ϕT

LP
(β) = min

t∈T
ϕt

LP
(β) = min

t∈T
{π̂tβ + π̂tlt + ˆ̄πtut} (BB.D)

where (π̂t, π̂t, ˆ̄πt) is an optimal solution to the dual (BB.LP.D) at node t.
Since ϕT

LP
(b) = ϕ(b), this proves optimality of the final incumbent.
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Example: Dual Function from Branch and Bound

• Recall the following value function associated with an MILP from earlier.

ϕ(β) = min 6x1 + 4x2 + 3x3 + 4x4 + 5x5 + 7x6

s.t. 2x1 + 5x2 − 2x3 − 2x4 + 5x5 + 5x6 = β

x1, x2, x3 ∈ Z+, x4, x5, x6 ∈ R+.

• Suppose we evaluate ϕ(5.5) by solving the instance with fixed right-hand
side by LP-based branch-and-bound.

• Solving the root LP relaxation, we obtain a solution in which x2 = 1.1 and
the optimal dual multipler for the single constraint is c2/a2 = 4/5 = 0.8.

• We therefore branch on variable x2 and obtain two subproblems, whose
LP relaxations have the variable bounds x2 ≤ 1 and x2 ≥ 2, respectively.

• The problem is solved after this single branching, since c6/a6 < c1/a1 so
that x1 = x3 = 0 in any optimal solution when β > 0.
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Example: Dual Function from Branch and Bound

• To see how the branch-and-bound tree yields a dual function in this
particular case, we have the following dual solutions.

t πt πt π̄t

0 0.8 4.4 0.0 4.6 5.6 1.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0
1 1.0 4.0 0.0 5.0 6.0 0.0 2.0 0.0 −1.0 0.0 0.0 0.0 0.0
2 −1.5 9.0 11.5 0.0 1.0 12.5 14.5 0.0 0.0 0.0 0.0 0.0 0.0

• Note that we have added the bound constraints explicitly and the upper
bounds on all variables are initially taken to be a “big-M” value.

• Then, the following are the nodal dual functions.

ϕ0

LP
(β) = 0.8β

ϕ1

LP
(β) = β − 1

ϕ2

LP
(β) = −1.5β + 23

• The initial (global) dual function in the root node is ϕT0 = ϕ0

LP
.

• After branching, the (global) dual function is ϕT1 = min{ϕ1

LP
, ϕ2

LP
}.
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Example: Visualizing the Dual Function

33
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• Note the M , which is present because π̄1
2 = −1 and the implicit upper

bound on x2 is M in Node 1.

• By evaluating ϕ at a different right-hand side, but using the same tree
as a starting point, we can begin to approximate the full value function.

• On the next slide, we show how evaluating at multiple right-hand sides
can further improves the approximation.
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Strengthening  the  Dual  Function

• The  dual  function  can  be  strengthened  by  noting  that  the  dual  feasible 
region  is  the  same  for  all  nodes.

• We  can  therefore  approximate  the  nodal  value  function  by  taking  a  max 
over  all  known  dual  solutions.

• Then  we  obtain

min{max{0.8β  ,  β  −  1,  −1.5β  },  max{0.8β  ,  β   - M,  −1.5β  +  23}}
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Example: Iterative Refinement

Node 0
ϕ0

LP
= 0.8β

Node 2
ϕ2

LP
= −1.5β + 11.5

Node 1
ϕ1

LP
= β

x2 = 0 x2 ≥ 1

Node 0
ϕ0

LP
= 0.8β

Node 2
ϕ2

LP
= −1.5β + 11.5

Node 4
ϕ4

LP
= −1.5β + 23

Node 3
ϕ3

LP
= β − 1

x2 = 1 x2 ≥ 2

Node 1
ϕ1

LP
= β

x2 = 0 x2 ≥ 1

Recall again that these pictures are for minimization!
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Tree Representation of the Value Function

• Continuing the process, we eventually generate the entire value function.

• Consider the strengthened dual

ϕ∗(β) = min
t∈T

c⊤Itx
t
It
+ ϕt

N\It(β −AItx
t
It
),

• It is the set of indices of fixed variables, xt
It

are the values of the
corresponding variables in node t.

• ϕt
N\It is the value function of the linear optimization problem at node t,

including only the unfixed variables.

Theorem 4. Under the assumption that {β ∈ Rm2 | ϕI(β) < ∞}
is finite, there exists a branch-and-bound tree with respect to which
ϕ∗ = ϕ.
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Example of Value Function Tree

Node 0

Node 8

Node 10

Node 12

Node 14

Node 16

Node 18
β + 30

Node 17
max{β + 25,−2β − 5}

x3 = 5 x3 ≥ 6

Node 15
max{β + 20,−2β − 4}

x3 = 4 x3 ≥ 5

Node 13
max{β + 15,−2β − 3}

x3 = 3 x3 ≥ 4

Node 11
max{β + 10, g9 = −2β − 2}

x3 = 2 x3 ≥ 3

Node 9
max{β + 5, g7 = −2β − 1}

x3 = 1 x3 ≥ 2
Node 1

Node 3

Node 5

Node 7
−2β + 42

Node 6
max{2β + 28, β − 2}

x2 = 2 x2 ≥ 3

Node 4
max{−2β + 14, β − 1}

x2 = 1 x2 ≥ 2

Node 2
max{−2β, β}

x2 = 0 x2 ≥ 1

x3 = 0 x3 ≥ 1
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Correspondence of Nodes and Local Stability Regions
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