Lecture 3: Dynamic Programming

Zhi Wang

School of Management and Engineering
Nanjing University

Jun. 30th, 2022

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022 1/58

Table of Contents

@ Finite Markov Decision Processes

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022 2/58

Markov Decision Process (MDP)

= <S’ A7 T7 R>
S State space

A: Action space

state s € S (discrete/continuous)

action a € A (discrete/continuous)

T Transition operator Tk =p(st41 =jlse = t,a; = k)

R: Reward function Rijr=1(s141=Jjlst =14,a, = k)

.

Z Wang (NJU)

(St+1|5t: ar) \[/ p(str1lse at)
T

7(So, @) r(s1,a1)

Dynamic Programming Jun. 30th, 2022

3/58

Markov Decision Process (MDP)

@ A classical formalization of sequential decision making
o Choosing different actions in different situations
e Actions influence not just immediate rewards, but also subsequent
situations through future rewards
e Involve delayed reward and the need to tradeoff immediate and
delayed reward

@ A mathematically idealized form of the RL problem
o Precise theoretical statements can be made
o Key elements of the problem’s mathematical structure, such as returns,
value functions, Bellman equations, etc
e A tension between breadth of applicability and mathematical
tractability

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022 4/58

The Goal of RL

@ Find optimal policies to maximize cumulative reward

o

7 = argmaxE, g (8¢, ar)
g t=0

e In a trial-and-error manner
o A general optimization framework for sequential decision-making

&
/@@’ \ 2
o s, ees
P(st+1lSt, ac) j/ P(st+1lse, ar) @
T

(S0, ao) r(51,a1)

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022 5/58

Supervised learning vs. Sequential decision making

Supervised learning

standard

@ Samples are independent and .
identically distributed (i.i.d.)

@ Given an input, map an
optimal output

features mid-level features classifier
e.g. HOG) (e.g. DPM) (e.g.SVM] J
. Felzenszwalb 08 L=

deep
learning

Reinforcement learning

@ Samples are not i.i.d., 00
temporally co-related o 8

@ Given an initial state, find a
sequence of optimal actions

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022 6/58

The agent-environment interface

o Agent: The learner, decision
aker

state reward action

s | [, A o Environment: The thing it

R . . -
o :]._mrwimrmem interact with, comprising

everything outside the agent

At each time step t = 0,1, 2, ..., the agent...
receives some representation of the environment’s state, S; € S

on that basis, selects an action, A; € A(s)

finds itself in a new state, S;41 (transition function)

o
o
@ one time step later, receives a numerical reward, R;y; € R C R
o
@ Sp, Ag, Ry, 51, A1, Ra, S, Ag, R3...

Z Wang (NJU Dynamic Programming Jun. 30th, 2022 7/58
g /

Dynamics of the MDP p: S x R x § x A — [0, 1]

p(s',rls,a) = Pr{S; = s, Ry = r|S;_1 = s, Ay_1 = a}

Z Zp(s’,r|s,a) =1, VseS,aec A(s)

s'eSreR

@ The probabilities given by p completely characterize the
environment’s dynamics
o Markov Property
e The probability of each possible value for S; and R; depends only on
the immediately preceding state S;_; and action A;_1, not at all on
earlier states and actions
° P(St,Rt|St—1,At—1) =
p(ShRtlstflvAtflaSt727At72aSt73aAt73a)

@ Recall supervised learning p(X;|X;) =0

Z Wang (NJU Dynamic Programming Jun. 30th, 2022
g

8/58

Dynamics of the MDP p: S x R x § x A — [0, 1]

@ The probabilities given by p completely characterize the
environment’s dynamics

p(s',r|s,a) = Pr{S; = s, Ry = 7|S;—1 = s, Ay_1 = a}

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022 9/58

Goals and rewards

@ Reward Hypothesis — by R. S. Sutton

e That all of what we mean by goals and purposes can be well thought
of as the maximization of the expected value of the cumulative sum of
a received scalar signal (called reward).

@ The agent’s goal: maximize the total amount of reward it receives
o maximize J(7) = Ex [> oV ri41]
e Maximize not immediate reward, but cumulative reward in the long
run

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022 10 /58

Episodes and returns

@ The subsequence of the agent-environment interaction, episodes
° St7 Ata Rt-‘rl) St-‘rla At-‘rl; Rt+23 weey ST—].) AT—17 RT7 ST
e Each episode ends in a special state called the terminal state, St

@ We seek to maximize the expected return, G, the reward sequence

] Gt = Rt+1 + Rt+2 + + RT
e Episodic tasks

Z Wang (NJU Dynamic Programming Jun. 30th, 2022 11 /58
g /

Discount rate 7 € [0, 1]

@ Infinite case, T =
@ Assume that: 0 < Ryin < R < Rz < 00

@ Without discount factor: unbounded

Gt =R+ Ryy1 + Ryyo + ...

=00
@ With discount factor: bounded

Gt =R+ YRyt + 7V’ Riyo + ...
< Rpaz + ')/Rmax + 72Rmax + ...

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022

Discount rate 7 € [0, 1]

@ The expected discounted return
o Gy = Rt+1 + ’YRt+2 + ’}/QRH_g... = Ziozl ’)/kRH_k_H
@ The discount rate determines the present value of future rewards: a
reward received k time steps in the future is worth only 4*~1 times
what it would be worth if it were received immediately
@ v — 0, the agent is “myopic”, only maximizing immediate rewards
e Akin to supervised learning that maximizes the log-likelihood of each
sample, log p(y;|z;)
@ v — 1, the agent is “farsighted”, taking future rewards into account

@ Returns at successive time steps are related to each other

Gt = Riy1 +v(Repo + YRiy3 + Y2 Riga + ...)
= Rit1 + 7G4

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022 13 /58

~ changes the MDP

Without discount:

&

p(s'ls, a)

With discount:

©

p(s'ls,a) =1-y

p(s'ls,a) = yp(s'ls,a)

Z Wang (NJU)

Dynamic Programming Jun. 30th, 2022 14 /58

Policies and value functions

e Policy: 7(als), a mapping from states to probabilities of selecting
each possible action
o > mlals)=1
e e.g., for a given state s1, four possible actions
plar) =0.1,p(az) = 0.3,p(asz) = 0.2,p(ays) =4

@ Value functions: function of states or state-action pairs

o State-value function V;(s): Estimate how good it is for the agent to be
in a given state

e Action-value function Q(s,a): Estimate how good it is to perform a
given action in a given state

e "“How good”: defined in expected future rewards, i.e., expected return

e Depend on what actions to take, defined w.r.t. particular ways of
acting, called policies, 7

@ RL = estimate value functions + estimate polices + estimate both

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022 15 /58

Value functions

o V., the state-value function for policy 7

Vﬂ() [thSt —8

Z’y Rt+k+1]St—s] Vse S
k=1

@ Q, the action-value function for policy 7

Qx(s,a) = Ex[G|S; = s, Ay = a]

o
Y AV RerialSi =5, A =a
k=1

,Vs € S,a € A(s)

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022 16 /58

Relationship between state- and action-value functions

V7r(3) =E; |:kz—:1 ’Vth+k+1|SL = S:|

Qr(s,a) = Er [Z V' Ryyji1]Se = s, Ay = a]
k=1

Vi(s)

=Ex | >V Rerrs|Se = 5]
k=1
Z’Y Ritp1]St=s,Av=a

= Z (a]s)E
k=1
= ZW als)Qx(s,a) = Equn(als)[@x (s, a)]

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022 17 /58

A fundamental property: Bellman equation

Vﬂ—(S) = E [Gt‘St = S] =K [Rt+1 +'7Gt+1’St = S]
—Z (als) ZP (8's7ls,a)[r + VEx[Grya|Sir1 = 5]

—Z (als) Zps rls,a)[r +yVz(s')]

@ Average over all the possibilities, weighting
each by its probability of occurring

@ Express the relationship between the value of
a state and the values of its successor states

/
@ Transfer value information back to a state OO0 OO OO0s
. Backup diagram for v
from its successor states

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022 18 /58

Example: Gridworld

A B 3.3/8.8/44/53(1.5

\ +5 1.5/3.0/ 2.3/ 1.9/ 0.5
+10) B' <—I—> 0.1/0.7|0.7| 0.4|-0.4

-1.0/-0.4-0.4-0.6-1.2]

Actions
A4 1.9-1.3-1.2-1.4-2.0

Figure 3.3: Gridworld example: exceptional reward dynamics (left) and state-value function for the equiprob-
able random policy (right).

Va(s) = Y w(als)[r + V()]

a

@ Actions that would take the agent off the grid leave its location
unchanged, but also result in » = —1, otherwise r =0

@ From state A, all four actions yield 7 = 10 and take the agent to A’
e From state B, all actions yield 7 = 5 and the agent to B’

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022 19 /58

Optimal policies and optimal value functions

@ RL tasks: find a policy that achieves a lot of reward over the long run
@ Value functions define a partial ordering over policies
o m > if and only if V(s) > Vn/(s),Vs €S

@ At least one policy that is better than or equal to all other policies,
i.e., optimal policy

@ Optimal policies, 7, share the same optimal value function

Vi(s) =maxVz(s), VseS

Q+«(s,a) = maxQr(s,a), Vse S,aec A(s)
Qx«(8,a) = E[Ry11 + Vi (Si41)|S: = 5, Ay = d]

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022 20 /58

Bellman optimality equation

Vi(s) = max Q. (s.a)
= méxxE,r* [G¢|St = s, Ay = a]
= m3XEw* [Riy1 +7Gi41|Se = s, Ay = a]
= mgxxE[RtH + Vi (St41)|St = s, Ay = a

= max Y- p(s',7ls, @)l + Vi)

s'r

@ The value of a state under an optimal policy must equal the expected
return for the best action from that state

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022 21/58

Bellman optimality equation

Q+(s,a) = E[Ry1 + VIIZ%XQ*(SHL a')|S; = s, Ay = a

= ZP(3/7 T|57 a) [T + ’anaz}x Q*(Slv a/)]

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022

Determine optimal policies from optimal value functions

@ For V,: a one-step search
e Actions that appear best after one-step search will be optimal actions

@ For Q.: no need to do a one-step-ahead search

o a, = argmax, Q.(s,a)

e The optimal action-value function allows optimal actions to be selected
without having to know anything about possible successor states and
their values, i.e., without having to know anything about the
environment’s dynamics

Z Wang (NJU Dynamic Programming Jun. 30th, 2022 23 /58
g /

Example: Gridworld

16.0|17.8/16.0|14.4|13.0]

A 14.4/16.0/14.4[13.0{11.7|

+
R
:
n
n

LILLT R

A\‘ B \ 22.0[24.4/22.0{19.4{17 .5 d «— «—
+5 19.8)22.0/19.8/17.8|16.0] T_, 4_T «

H0] | B' 17.8/19.8/17.8/16.0[14.4 T_, 4_T 4_T
Lt g8

Lt Jddd

)

Gridworld Vi

*

Figure 3.6: Optimal solutions to the gridworld example.

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022 24 /58

Review

State transition function - dynamics of the MDP

Episodes and returns
o The discount rate
Policies and value functions

o State-value functions, action-value functions
o Their relationships
e Bellman equation

Optimal policies and value functions
e Bellman optimality equation

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022

Table of Contents

© Dynamic Programming
@ Policy evaluation and policy improvement

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022 26 /58

Dynamic Programming (DP)

o It refers to simplifying a complicated problem by breaking it down
into simpler sub-problems in a recursive manner.

@ Finding the shortest path in a graph using
optimal substructure

@ A straight line: a single edge,
a wavy line: a shortest path

@ The bold line: the overall shortest path from
start to goal

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022 27 /58

Dynamic Programming (DP)

@ A collection of algorithms that can be used to compute optimal
policies given a perfect model of the environment (MDP)

e Of limited utility in RL both because of their assumption of a perfect
model and because of their great computational expense

e Important theoretically, provide an essential foundation for the
understanding of RL methods

o RL methods can be viewed as attempts to achieve much the
same effect as DP, only with less computation and without assuming
a perfect model of the environment

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022 28 /58

Policy evaluation (Prediction)

@ Compute the state-value function V. for an arbitrary policy m

Vﬂ—(s) = EW[Gt’St = S]
=Ex[Rit1 + YG141]S: = 9]

=3 " w(als) 303" (s, rls. @)+ AE(Cria[Seir =)
= S w(als) Y p(s.rls @)l + AVa(s)]

@ If the environment’s dynamics are completely known
e In principal, the solution is a straightforward computation

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022

Iterative policy evaluation

o Consider a sequence of approximate value functions Vg, V1, V5, ...
e The initial approximation, V{, is chosen arbitrarily

@ Use the Bellman equation for V. as an update rule

Vir1(8) = Ex[Rig1 + YV (Se1)|Se = 5]
= w(als) Y (s, rls, a)r + yVi(s)]

o V. =V, is a fixed point for this update rule

o The sequence {V}} converges to V;; as k — oo under the same
conditions that guarantee the existence of V.

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022 30/58

Iterative policy evaluation

Iterative Policy Evaluation, for estimating

Input 7, the policy to be evaluated
Algorithm parameter: a small threshold € > 0 determining accuracy of estimation
Initialize V (s), for all s € 8T, arbitrarily except that V (terminal) = 0

Loop:
A+0
Loop for each s € §:
v+ V(s)
V(s) € X, m(als) Xy, p(s',rls,0) [r + 1V (s)]
A +— max(A, v —V(s)])
until A < 6

@ The updates as being done in a sweep through the state space

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022 31/58

Example: Gridworld

1 2 |3
1 4 |5 |6 |7 R = -
l on all transitions
8 |9 |10 |11

actions
12 |13 |14

@ Four actions deterministically case the corresponding state transitions
o e.g., p(6,—1|5,right) = 1,p(7, —1|7,right) = 1
° p(lO,r|5,mght) =0,VreRrR
@ Test: If every action will succeed in the next state with probability
90%, then what are the state transition probabilities?
o p(6,—1|5,right) =? p(5,—1|5,right) =? p(5,0]5,right) =

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022 32/58

The agent follows the equiprobable random policy

Vg for the
random policy 0.0]2.4]2.0] 3.0
-2.4|-2.9]-3.0[-2.
0.0 0.0[0.0] 0.0 k=3 2:412.91-3.0-2.9
-2.9]-3.0[-2.9[-2.4
k=0 0.0} 0.0[0.0] 0.0 random
- 00| 00[00[00 policy -3.0]-2.9]-2:4] 0.0
0.0] 0.0{ 0.0] 0.0
0.0]-6.1|-8.4[-9.0
1.0|-1.0[- -6.1|-7.7|-8.4|-8.4
0.0|-1.0|-1.0[-1.0 k=10
k=1 -1.0|-1.0|-1.0[-1.0 -8.4|-8.4|-7.7|-6.1
-1.0|-1.0[-1.0[-1.0 -9.0|-8.4]-6.1{ 0.0
-1.0/-1.0[-1.0 0.0
0.0]-14.]-20.-22.
0.0]-1.7|-2.0[-2.0 fm 14182020,
k=2 -1.7]-2.0-2.0|-2.0 20.]-20.|-18.|-14.
-2.0|-2.0{-2.0[-1.7
-22.0-20.|-14.{ 0.0
-2.0]-2.0[-1.7 0.0

@ The final estimate is in fact V;
e The negation of the expected number of steps from that state until
termination

Z Wang (NJU) Dynamic Programming Jun. 30th, 20

V. for the
random policy

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

@ Write the value function V; for two sweeps

random
policy

o Case I: a random policy, R; = 1 when transiting to the right bottom

cell, R; = 0 on all other transitions

e Case Il: Ry = —1 on all transitions, a policy that always goes to right

Z Wang (NJU)

Dynamic Programming

Jun. 30th, 20!

Policy improvement

@ Our reason for computing the value function for a policy is to help
find better policies

e We have determined the value function V. for policy 7

e we would like to know whether or not we should change the policy to
deterministically choose an action a # 7(s)

e We know how good it is to follow the current policy from s, e.g., V;,
but would it be better or worse to change to the new policy, ©'?

o Consider selecting a in s and thereafter following the existing policy 7

Qr(s,a) = E[Rey1 +YVa(Se41)|Se = s, Ar = a
= Zp(s', rls,a)[r + Vi (s')]

o If Qr(s,a) > Vy(s)?

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022 35/58

Policy improvement theorem

@ Let m and 7’ be any pair of deterministic policies such that,
Qx(s,7m(s)) > Vp(s), VseS.

Then the policy 7’ must be as good as, or better than, .

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022 36 /58

Policy improvement theorem

V(s) < Qr(s,7'(s))
=E[Ri1 + 7V (St41)|Se = s, Ay = 7' (s)]
= Ep/[Rt1 + YVr(St41)]St = 5]
Ex[Riy1 4+ vQr(Se41, 7 (St41))]S: = s]
Ew/ [Ris1 + VEwr [Riv2 + Ve (Si42)|Se1, Argr = 7' (Sp41)]|Se =]
= Ew[Ris1 + YRiv2 + 7 Va(Sis2)[Se = 8]
Er[Ris1 + YRiv2 + 7V Rigs + v Vi (Si43)[St = 5]

Eﬂ/ [Rt—l-l + "}/Rt_t,_z + "}/QRH_?, + ’YBRt+4 + |St = S]
= VW/(S)

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022 37/58

Policy improvement

o Consider the new greedy policy, 7/, selecting at each state the action
that appears best according to Q- (s, a)

7'(s) = argmax Q(s,a)
= arg maxE[RtH + ’)/VW(St+1)|St =S, At == CL]
— argmax 3 (s, 7[5, 0)lr + Vi (5]

@ The process of making a new policy that improves on an original
policy, by making greedy w.r.t. the value function of the original
policy, is called policy improvement

o The greedy policy meets the conditions of the policy improvement
theorem

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022 38/58

e Note that w(als) € [0,1], >, 7(als) =1

Vir(s) = max Y p(s',rls, a)[r +7Va(s)]

> Z m(als) Zp(s’, rls,a)[r +vVx(s')]

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022 39/58

Policy improvement

@ Suppose the new policy 7’ is as good as, but not better than, the old
policy w, then V., =V

Vi (s) = max E[Re1 + Vi (Sp41)[Se = 5, Ay = q

= max Zp(s’, rls,a)[r + vV (s

s'r

o The same as the Bellman optimality equation
e Both 7 and 7’ must be optimal policies

@ Policy improvement must give us a strictly better policy except when
the original policy is already optimal

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022 40/58

Table of Contents

© Dynamic Programming

@ Policy iteration and value iteration

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022 41/58

Policy iteration

@ Using policy improvement theorem, we can obtain a sequence of
monotonically improving policies and value functions

e F: Policy Evaluation, I: Policy Improvement
E I E I E I E
g — Veg = m = Vo =m0 — o= — Vi

@ This process is guaranteed to converge to an optimal policy and
optimal value function in a finite number of iterations
e Each policy is guaranteed to be a strictly improvement over the
previous one unless it is already optimal
o A finite MDP has only a finite number of policies

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022 42 /58

Policy iteration

Policy Iteration (using iterative policy evaluation) for estimating 7 -

1. Initialization
V(s) € R and 7(s) € A(s) arbitrarily for all s € §

2. Policy Evaluation
Loop:
A0
Loop for each s € §:
v+ V(s)
V(s) < 2o, p(s"7]s,7(s)) [r+~V(s))]
A +—max(A, [v —V(s)|)
until A < 0 (a small positive number determining the accuracy of estimation)

3. Policy Improvement
policy-stable < true
For each s € 8:
old-action <+ m(s)
7(s) < argmax, Y. . p(s',r]s, a)[r + V()]
If old-action # 7 (s), then policy-stable < false
If policy-stable, then stop and return V' ~ v, and 7 ~ 7,; else go to 2

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022 43/58

Policy iteration often converges in very few iterations

U} for the greedy policy
random policy w.rt. v
0.0[-2.4]-2.9]-3.0] < < 9
0.0} 0.0} 0.0{ 0.0] k=3 -2.4]-2.9|-3.0[-2.9 : ‘_'L"—L |
k=0 0.0] 0.0[0000 - random 2.9]-3.0]-2.9]-2.4 ly
00[00[00]00] policy -3.0]-2.9]-2.4] 00 EEE
0.0} 0.0 0.0{ 0.0]
0.0[-6.1{-8.4]-9.0] < < 9
0.0[-1.0]-1.0[-1.0] [~] k=10 -6.1{-7.7]-8.4)-8.41 T e[y og::’(r:nal
k=1 -1.0[-1.0]-1.0[-1.0} : 1 8.4]-8.4]-7.7]-6.1 :_. S ol policy
-1.0{-1.0]-1.0]-1.0 T 1 -9.0|-8.4-6.1{ 0.0 d Bd
-1.0]-1.0{-1.0] 0.0 { i
00[-14]-20]-22. = 4
00|-1.7[-2.0]-2.0] [~ [Pl K=o -14]-18]-20[-20 =N
k=2 -1.7[-2.0[-2.0[-2.0] G -20.[-20.|-18.|-14 RN
-2.0]-2.0]-2.0[-1.7 Tl el 22]20]-14] 00 B[
2.0]-2.0]-1.7] 0.0 P - -

@ The final estimate is in fact v,

e The negation of the expected number of steps from that state until
termination

o The last policy is guaranteed only to be an improvement over the
random policy, but in this case it, and all policies after the third step of
policy evaluation, are optimal

Z Wang (NJU) Dynamic Programming Jun. 30th, 20

Value iteration

1. Initialization
V(s) € R and n(s) € A(s) arbitrarily for all s € 8

2. Policy Evaluation

00p:
A0
Loop for each s € 8:
v+ V(s)

V(s) « >y, p(ssr|s,m(s)) [r + '}'V(s’)]
A+ max(A, [v -V (s)])
mtil A < 6 (a small positive number determining the accuracy of estimation)

. Policy Improvement
policy-stable < true
For each s € 8:
old-action + 7(s)
7(s) + argmax, Y., . p(s,r
If old-action # 7(s), then policy-stable < false
If policy-stable, then stop and return V ~ v, and 7 ~ m,; else go to 2

5, a)[r+V ()]

@ Each policy iteration involves policy evaluation, which may be a
protracted iterative computation requiring multiple sweeps through
the state set

Z Wang (NJU) Dynamic Programming Jun. 30th, 20

Truncate policy evaluation?

Vy, for the greedy policy
random policy w.rt. v
— |- |«
0.0/ 0.0[0.0] 0.0 k=3 T ey
=3 IR
0.0/ 0.0 0.0] 0.0 random
k=0 a[_do o fud I}
0.0[0.0[0.0] 0.0 policy i g
0.0 0.0{ 00] 00
0.0|-6.1-8.4[-9.0 — = g
0.0[-1.0]-1.0[-1.0]] k=10 -6.1{-7.7]-8.4)-8.41 T =]y 4_09}!"‘3'
= olicy
k=1 -1.0|-1.0]-1.0[-1.0] t | -8.4/-8.4|-7.7]-6.1 RN policy
-1.0[-1.0]-1.0]-1.0] | | -9.0[-8.4]-6.1] 0.0 ERE
-1.0[-1.0[-1.0] 0.0 } ind
0.0|-14-20.[-22, il A}
00|-1.7[-2.0]-2.0] [[Pl K=o -14]-18]-20[-20 =N
k=2 -1.7]-2.0[-2.0[-2.0 GG 20]20]-18] 14 RN
S0l2.020-17 T ._‘_, el -22.|-20.|-14.| 0.0 EEE
-2.0{-2.0]-1.7] 0.0 =

@ Policy evaluation iterations beyond the first three have no effect on
the corresponding greedy policy

Z Wang (NJU) Dynamic Programming Jun. 30th,

Value iteration = Truncate policy evaluation for one sweep

@ In policy iteration, stop policy evaluation after just one sweep

Vir1(s) = D p(s',rls, m(s)) Ir + 7 Vil(s')]

Tr+1(8) = arg max Zp(s’, rls, a)[r + YVis1 ()]

s'r

@ Combine into one operation, called value iteration algorithm

Vir1(s) = max Zp(s', rls,a)[r +yVi(s")]

s',r

e For arbitrary Vp, the sequence {V}} converges to V. under the same
conditions that guarantee the existence of V,

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022 47 /58

Value iteration

@ Bellman optimality equation

Vi(s) = max) _p(s',r]s,a)[r +Vi(s')]

s'r

@ Value iteration

Vir1(s) = max Zp(s', rls,a)[r +YVi(s")]

s',r

e Turn Bellman optimality equation into an update rule
o Directly approximate the optimal state-value function, V,

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022

Value iteration vs. policy evaluation

Backup diagram for

Backup diagram for))
policy evaluation

value iteration

S S
max
T
a a

OO OO O Of /

OO OO O 0Os

o Use Bellman o;()jtlmalltly @ Use Bellman equation as

equation as update rule update rule

° Appr0X|r|‘nat? the.opt;Tal @ Approximate the state-value
state-value tunction V. function of a given policy V;

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022 49 /58

Value iteration algorithm

Value Iteration, for estimating 7 ~ 7,

Algorithm parameter: a small threshold # > 0 determining accuracy of estimation
Initialize V (s), for all s € 8, arbitrarily except that V (terminal) = 0

Loop:

| A«0

| Loop for each s € 8:

| v+ V(s)

| V() - max, ZS,’Tp(s'7 r|s,a) ['r‘ + ’YV(S’)]
| A + max(A, v — V(s)])

until A < 6

Output a deterministic policy, m &~ 7, such that
n(s) = argmax, Y., . p(s',7]s, a)[r + 7V ()]

@ One sweep = one sweep of policy evaluation + one sweep of policy
improvement

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022 50/58

Vg for the
random policy

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-

random
policy

@ Write the value function V' (s), Vs for two sweeps, using the value

iteration algorithm

e R; =1 when transiting to the right bottom cell, R; = 0 on all other

transitions

Z Wang (NJU)

Dynamic Programming

Jun. 30th, 20!

Properties of dynamic programming

o Bootstrapping: Update estimates on the basis of other estimates

o Estimate the values of states based on estimates of the values of
successor states

@ Model-based: Require the accurate model of the environment
o The complete probability distributions of all possible transitions,

p(s',r|s,a)

Algorithms Bootstrapping? | Model-based?
Dynamic programming Yes Yes
Monte Carlo methods No No

Temporal-difference learning Yes No

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022 52 /58

Why is DP fundamental and important?

@ Important theoretically, provide an essential foundation for the
understanding of RL methods

@ RL methods can be viewed as attempts to achieve much the same
effect as DP, only with less computation and without assuming a
perfect model of the environment

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022 53 /58

Why is DP fundamental and important?

PHYSICAL SCIENCES

L)

o

Fast reinforcement learning with generalized

policy updates

André Barreto, (2 Shaobo Hou, Diana Borsa, David Silver, and Doina Precup

PNAS first published August 17, 2020 https://doi.org/10.1073/pnas.1907370117

Edited by David L. Donoho, Stanford University, Stanford, CA, and approved July 9, 2020 (received for review July 20,

2019)

Generalized Policy Updates

From the discussion above, one can see that an important
branch of the field of RL depends fundamentally on the notions
of policy evaluation and policy improvement. We now discuss
generalizations of these operations.

Definition 3. “Generalized policy evaluation” (GPE) is the com-
putation of the value function of a policy = on a set of
tasks R.

Definition 4. Given a set of policies IT and a task r, “generalized
policy improvement” (GPI) is the definition of a policy =’ such
that

QF (s, a) > sup QF (s, a) forall (s,a) €S x A. [5]
well

Z Wang (NJU) Dynamic Programmi

Review

@ Policy evaluation

o Use Bellman equation as the update rule
e Guaranteed to converge

@ Policy improvement

o Make greedy w.r.t. the value function of the original policy
@ Policy iteration

o Alternate between policy evaluation and policy improvement steps
o Value iteration

e Truncate policy evaluation for one sweep
o Use Bellman optimality equation as the update rule

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022 55 /58

Learning objectives of this lecture

You should be able to...

@ Know elements of finite MDPs, the agent-environment interface

o (Discounted) returns and episodes, polices and value functions,
Bellman (optimality)

@ Understand and be able to use dynamic programming

@ Know policy evaluation and policy improvement, policy iteration and
value iteration

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022 56 /58

References

@ Chapter 3: Finite Markov Decision Processes, Chapter 4: Dynamic
Programming, Reinforcement Learning: An Introduction, 2nd Edition
e http://202.119.32.195/cache/2/03/incompleteideas.net/
5b682cef88335157bc5542267cf3f442/RLbook2018. pdf

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022 57 /58

http://202.119.32.195/cache/2/03/incompleteideas.net/5b682cef88335157bc5542267cf3f442/RLbook2018.pdf
http://202.119.32.195/cache/2/03/incompleteideas.net/5b682cef88335157bc5542267cf3f442/RLbook2018.pdf

THE END

Z Wang (NJU) Dynamic Programming Jun. 30th, 2022 58 /58

	Finite Markov Decision Processes
	Dynamic Programming
	Policy evaluation and policy improvement
	Policy iteration and value iteration

