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Model-based vs. Model-free

Model-based algorithms, e.g., dynamic programming

Require the prior knowledge of the environment’s dynamics, the
complete probability distributions of all possible transitions
In many cases, it is easy to generate experience sampled according to
the desired probability distributions, but infeasible to obtain the
distributions in explicit form

Model-free algorithms, e.g., Monte Carlo methods,
temporal-difference learning

Require only experience – sample sequences of states, actions, and
rewards from actual or simulated interaction with an environment
Learning from actual experience is striking because it requires no prior
knowledge of the environment’s dynamics, yet can still attain optimal
behavior
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The term “Monte Carlo” (MC)

A broad class of computational algorithms that rely on repeated
random sampling to obtain numerical results

Use randomness to solve problems that might be deterministic in
principle

The Law of Large Numbers: the basis for Monte Carlo simulations

As the number of identically distributed, randomly generated variables
increases, their sample mean approaches their theoretical mean

Z Wang (NJU) Lecture 4: MC and TD Oct. 30th, 2022 4 / 71



Monte Carlo estimate of PI

We can estimate pi to as many digits as we like by simply playing a
game of darts

Generate random points within a box, and counting the number of
points which fall within an embedded circle

Z Wang (NJU) Lecture 4: MC and TD Oct. 30th, 2022 5 / 71



Monte Carlo methods for RL

Based on averaging sample returns

We define Monte Carlo methods only for episodic tasks, to ensure that
well-defined returns are available
Incremental in an episode-by-episode sense, but not in a step-by-step
sense
Average complete returns, as opposed to methods that learn from
partial returns, e.g., temporal-difference learning
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Monte Carlo prediction

Considering Monte Carlo methods for learning the state-value
function for a given policy

Vπ(s): the expected return–expected cumulative future discounted
reward–starting from s
Estimate Vπ(s) from experience: simply average the returns observed
after visits to s
As more returns are observed, the average should converge to the
expected value

Vπ(s) = Eπ[Gt|St = s]

= Eπ[Rt+1 + γRt+2 + γ2Rt+3 + ...|St = s]
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Monte Carlo prediction

Some notations

Each occurrence of state s in an episode is called a visit to s
s may be visited multiple times in the same episode, we call the first
time it is visited in an episode the first visit to s

First-visit Monte Carlo method

Estimate Vπ(s) as the average of the returns following first visits to s
Have been most widely studied

Every-visit Monte Carlo method

Average the returns following visits to s
Extend more naturally to function approximation and eligibility traces
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First-visit MC prediction
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First-visit MC prediction

Both first-visit MC and every-visit MC converge to Vπ as the number
of (first) visits to s goes to infinity

For first-visit MC

Each return is an independent, identically distributed estimate of Vπ
with finite variance
Each average is an unbiased estimate, and the standard deviation of its
error falls as 1/

√
n
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Backup diagram for MC prediction

The root is a state node, and below it is the entire
trajectory of transitions along a particular single episode,
ending at the terminal state

MC shows only those sampled on
the one episode

Opposed to DP that shows all
possible transitions

MC goes all the way to the end
of the episode

Opposed to DP that includes
only one-step transitions
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Properties of MC

MC methods do not bootstrap

Estimates for each state are independent
The estimate for one state does not build upon the estimate of any
other state

The computational expense of estimating the value of a single state is
independent of the number of states

This can make MC particularly attractive when one requires the value
of only one or a subset of states
One can generate many sample episodes starting from the states of
interest, averaging returns from only these states, ignoring all others
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MC estimation of action values

With a model

State values alone are sufficient to determine a policy

Without a model

One must explicitly estimate the value of each action in order for the
values to useful in suggesting a policy

A state-action pair (s, a) is said to be visited in an episode if ever the
state s is visited and action a is taken in it

To help in choosing among the actions available in each state, we need
to estimate the value of all the actions from each state, not just the
one we currently favor
This is the general problem of maintaining exploration
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Maintaining exploration

The assumption of exploring starts
Specify that the episodes start in a state-action pair, and that every
pair has a nonzero probability of being selected as the start
Guarantee that all state-action pairs will be visited an infinite number
of times in the limit of an infinite number of episodes
Sometimes useful, but cannot be relied upon in general, particularly
when learning directly from actual interaction with an environment

The most common alternative approach to assuring that all
state-action pairs are encountered is to consider only policies that are
stochastic with a nonzero probability of selecting all actions in each
state
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Monte Carlo control

Construct each πk+1 as the greedy policy w.r.t. Qπk

πk+1(s) = argmax
a

Qπk(s, a)

Policy improvement theorem

Qπk(s, πk+1(s)) = Qπk(s, argmax
a

Qπk(s, a)) = max
a

Qπk(s, a)

≥ Qπk(s, πk(s)) = Vπk(s)

Use generalized policy iteration to approach
optimal policies

π0
E−→ Qπ0

I−→ π1
E−→ Qπ1

I−→ π2
E−→ ...

I−→ π∗
E−→ Q∗
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MC with policy iteration

Two unlikely assumptions

The episodes have exploring starts
Policy evaluation could be done with an infinite number of episodes
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MC control without exploring starts

Without the assumption of exploring starts

If simply making the policy greedy w.r.t. the current value function, it
can meet the policy improvement theorem, but would prevent further
exploration of non-greedy actions

Use a soft policy

π(a|s) > 0,∀s ∈ S, a ∈ A(s)
Gradually shifted closer and closer to a deterministic optimal policy
ε-soft policies: π(a|s) ≥ ε

|A(s)|

ε-greedy policy

With probability ε, select an action at random
Otherwise, choose the greedy action
An example of the ε-soft policy, closest to greedy among ε-soft policies
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MC control with soft polices
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Policy improvement theorem for soft polices

For any ε-soft policy, π, any ε-greedy policy, π′, w.r.t. Qπ is
guaranteed to be better than or equal to π

Qπ(s, π
′(s)) =

∑
a

π′(a|s)Qπ(s, a)

=
ε

|A(s)|
∑
a

Qπ(s, a) + (1− ε)max
a

Qπ(s, a)

≥ ε

|A(s)|
∑
a

Qπ(s, a) + (1− ε)
∑
a

π(a|s)− ε
|A(s)|

1− ε
Qπ(s, a)

=
ε

|A(s)|
∑
a

Qπ(s, a)−
ε

|A(s)|
∑
a

Qπ(s, a)+
∑
a

π(a|s)Qπ(s, a)

= Vπ(s)
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MC in AlphaGo
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MC in AlphaGo

Instead of brute forcing from millions of possible ways to find the right
path, Monte Carlo Tree Search algorithm chooses the best possible
move from the current state of the game’s tree with the help of RL.

Z Wang (NJU) Lecture 4: MC and TD Oct. 30th, 2022 22 / 71



Review

Monte Carlo methods

Model-free, directly learn from experience
Do not bootstrap

First-visit MC prediction

Should maintain exploration for estimation of action values

MC control with exploring starts

Can use a soft policy, i.e., ε-greedy policy
Meet the policy improvement theorem for ε-soft policy
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Temporal-Difference (TD) Learning

If one had to identify one idea as central and novel to RL, it would
undoubtedly be temporal-difference learning

A combination of Monte Carlo ideas and dynamic programming ideas
Like MC, TD can learn directly from raw experience without a model
of the environment’s dynamics (model-free)
Like DP, TD updates estimates based in part on other learned
estimates, without waiting for a final outcome (bootstrap)
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TD prediction

MC and TD in common

Use experience to solve the prediction problem, update their estimate
V of Vπ for the non-terminal state St occurring in that experience

MC: must wait until the return following the visit is known (end of an
episode), then use that return as a target for V (St)

V (St)← V (St) + α[Gt − V (St)]

TD: need to wait only until the next time step, use Rt+1 + γV (St+1)
as the target for V (St), bootstrapping

V (St)← V (St) + α[Rt+1 + γV (St+1)− V (St)]
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Basic TD algorithm

TD(0): A special case of the TD(λ) method using eligibility trace

One-step TD: A special case of the n-step TD methods
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Deep insight of the Bellman equation

Vπ(s) = Eπ[Gt|St = s]

= Eπ[Rt+1 + γGt+1|St = s]

= Eπ[Rt+1 + γVπ(St+1)|St = s]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γVπ(s
′)]

MC: The expected Gt is not known, a sample return is used in place
of the real expected return

DP: The true Vπ is not known, and the current estimate V (St+1) is
used instead

TD: It samples the expected values Rt+1, and it uses the current
estimate V (St+1) instead of the true Vπ

Combine the sampling of MC with the bootstrapping of DP
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Backup diagram for TD(0)

The value estimate for the state node is updated on the
basis of the one sample transition from it to the immediately
following state

Sample updates: based on a single sample successor,
involve looking ahead to a sample successor state

DP

Expected updates: based on a complete
distribution of all possible successors
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TD error

The difference between the estimated value of St and the better
estimate Rt+1 + γV (St+1)

δt = Rt+1 + γV (St+1)− V (St), V (St)← V (St) + αδt

The MC error, with V not updated during the episode

Gt − V (St) = Rt+1 + γGt+1 − V (St) + γV (St+1)− γV (St+1)

= δt + γ(Gt+1 − V (St+1))

= δt + γδt+1 + γ2(Gt+2 − V (St+2))

= δt + γδt+1 + ...+ γT−t−1δT−1 + γT−t(GT − V (ST ))

= δt + γδt+1 + ...+ γT−t−1δT−1 + γT−t(0− 0)

=

T−1∑
k=t

γk−tδk
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Advantages of TD prediction methods

Compared to DP, do not require a model of the environment, of
its reward and next-state probability distribution

In many cases, it is infeasible to obtain the distributions in explicit form

Compared to MC, wait only one time step instead of waiting until
the end of an episode

Applications have very long episodes, or continuing tasks have no
episodes at all
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Convergence property of TD prediction

Are TD methods sound? Convergence guarantee?

It is convenient to learn one guess from the next, without waiting for
an actual outcome
We can still guarantee convergence to the correct answer
For any fixed policy π, TD(0) has been proved to converge to Vπ, in
the mean for a constant step-size parameter if it is sufficiently small,
and with probability 1 if the step-size parameter decreases according to
the usual stochastic approximation conditions
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Convergence guarantee of TD prediction

It is convenient to learn one guess from the next, without waiting for
an actual outcome, and we can still guarantee convergence to the
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the usual stochastic approximation conditions
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On-policy vs. off-policy

Target policy π(a|s) Behavior policy b(a|s)

To be evaluated or improved To explore to generate data

Make decisions finally Make decisions in training phase

On-policy methods: π(a|s) = b(a|s)
Evaluate or improve the policy that is used to make decisions during
training
e.g., SARSA

Off-policy methods: π(a|s) 6= b(a|s)
Evaluate or improve a policy different from that used to generate the
data
Separate exploration from control
e.g., Q-learning
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SARSA: On-policy TD control

We follow the pattern of generalized policy iteration

Only this time using TD methods for the evaluation or prediction part

Learn the values of state-action pairs instead of a state-value function

Consider transitions between state-action pairs

For an on-policy method, estimate Qπ(s, a) for the current behavior
policy π and for all state-action pairs

V (St)← V (St) + α[Rt+1 + γV (St+1)− V (St)]

Q(St, At)← Q(St, At) + α[Rt+1 + γQ(St+1, At+1)−Q(St, At)]
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SARSA: On-policy TD control

Q(St, At)← Q(St, At) + α[Rt+1 + γQ(St+1, At+1)−Q(St, At)]

This update is done after every transition from non-terminal state St
If St+1 is terminal, then Q(St+1, At+1) is defined as zero
Use every element of the quintuple of events, (St, At, Rt+1, St+1, At+1)

The theorems assuring the convergence of
state values under TD(0) also apply to the
corresponding algorithm for action values
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SARSA algorithm

Follow the pattern of generalized policy iteration

Continually estimate Qπ for the behavior policy π, and at the same
time change π toward greediness w.r.t. Qπ
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Convergence properties of SARSA

Let behavior policy π be greedy w.r.t. current action value function

Meet the policy improvement theorem
However, prevent further exploration of non-greedy actions

Instead, soft policies are favored

ε-greedy or ε-soft policies

Convergence properties of SARSA depend on the nature of the
policy’s dependence on the action-value function Q

SARSA converges with probability 1 to an optimal policy and
action-value function as long as all state-action pairs are visited an
infinite number of times and the policy converges in the limit to the
greedy policy (which can be arranged, for example, with ε-greedy
policies by setting ε = 1/t)
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Compare the convergence property of DP
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Q-learning: Off-policy TD control

One of the early breakthroughs in RL was the development of an
off-policy TD control algorithm, known as Q-learning

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a

Q(St+1, a)−Q(St, At)]

The learned action-value function, Q, directly approximates the
optimal action-value function, Q∗, independent of the policy being
followed
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Q-learning: Off-policy TD control

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a

Q(St+1, a)−Q(St, At)]

Use the Bellman optimality equation into an update rule

Q∗(St, At) = Rt+1 + γmax
a

Q∗(St+1, a)
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Q-learning algorithm
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The reason for “off-policy”

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a

Q(St+1, a)−Q(St, At)]

Q-learning approximates the optimal action-value function for an
optimal policy, Q ≈ Q∗ = Qπ∗

The target policy is greedy w.r.t Q, π(a|s) = argmaxaQ(s, a)
The behavior policy can be others, e.g., b(a|s) = ε-greedy

Q(St, At)← Q(St, At) + α[Rt+1 + γQ(St+1, At+1)−Q(St, At)]

SARSA approximates the action-value function for the behavior
policy, Q ≈ Qπ = Qb

The target and the behavior policy are the same, e.g.,
π(a|s) = b(a|s) = ε-greedy
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Convergence properties of Q-learning

All state-action pairs are visited an infinite number of times

This a minimal requirement in the sense that any method guaranteed
to find optimal behavior in the general case must require it
Under this assumption and a variant of the usual stochastic
approximation conditions on the sequence of step-size parameters, Q
has been shown to converge with probability 1 to Q∗
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Example: Cliff walking

The usual action causing movement up, down, right, and left

r = −1 on all transitions except those into the region marked “The
Cliff”. Stepping into this region incurs a reward of −100 and sends
the agent instantly back to the start.

With ε-greedy action selection, ε = 0.1
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On-policy vs. Off-policy learning

Q-learning learns values for the optimal policy, traveling right along
the edge of the cliff

Occasionally fall off the cliff because of the ε-greedy action selection

SARSA takes the action selection into account and learns the longer
but safer path through the upper part of the grid

Q-learning’s online performance is worse than that of SARSA
If ε is gradually reduced, both methods would asymptotically converge
to the optimal policy
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Code example for maze navigation
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Code example for maze navigation
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Review

TD learning

A combination of DP (bootstrap) and MC
(model free)
Guarantee convergence under certain
assumptions

On-policy vs. off-policy control

SARSA: on-policy, behavior policy = target
policy
Q-learning: off-policy, behavior policy 6=
target policy
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Combine MC and one-step TD

Neither MC or one-step TD is always the best, we generalize both
methods so that one can shift from one to the other smoothly as
needed to meet the demands of a particular task

One-step TD: In many applications, one wants to be able to update
the action very fast to take into account anything that has changed

However, bootstrapping works best if it is over a length of time in
which a significant and recognizable state change has occurred

n = 1 n-step TD n =∞

TD(0) ↔ MC
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n-step TD prediction

Perform an update based on an intermediate number of rewards,
more than one, but less than all of them until termination
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Recall MC and TD(0) updates

In MC updates, the target is the complete return

Gt = Rt+1 + γRt+2 + ...+ γT−t+1RT

V (St)← V (St) + α[Gt − V (St)]

= V (St) + α[Rt+1 + γRt+2 + ...+ γT−t+1RT − V (St)]

In TD(0) updates, the target is the one-step return

Gt:t+1 = Rt+1 + γV (St+1)

V (St)← V (St) + α[Gt:t+1 − V (St)]

= V (St) + α[Rt+1 + γV (St+1)− V (St)]
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n-step TD update rule

For n-step TD, set the target as the n-step return

Gt:t+n = Rt+1 + γRt+2 + ...+ γn−1Rt+n + γnV (St+n)

All n-step returns can be considered approximations to the complete
return, truncated after n steps and then corrected for the remaining
missing terms by V (St+n)

V (St)← V (St) + α[Gt:t+n − V (St)]

= V (St) + α[Rt+1 + γRt+2 + ...+ γn−1Rt+n + γnV (St+n)− V (St)]

Z Wang (NJU) Lecture 4: MC and TD Oct. 30th, 2022 55 / 71



n-step TD algorithm
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n-step TD for on-policy control: n-step SARSA
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From n-step TD prediction to n-step SARSA

The main idea is to simply switch states for state-action pairs, and
then use an ε-greedy policy

re-define n-step returns (update targets) in terms of estimated action
values

Gt:t+n = Rt+1 + γRt+2 + ...+ γn−1Rt+n + γnQ(St+n, At+n)

Q(St, At)← Q(St, At) + α[Gt:t+n −Q(St, At)]

=Q(St,At)+α[Rt+1+...+γ
n−1Rt+n+γ

nQ(St+n,At+n)−Q(St,At)]
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n-step SARSA algorithm
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Eligibility traces: unify/generalize TD and MC

Almost any TD method can be combined with eligibility traces to
obtain a more general method that may learn more efficiently

e.g., the popular TD(λ) algorithm, λ refers the use of an eligibility trace
Produce a family of methods spanning a spectrum that has MC
methods at one end (λ = 1) and one-step TD methods at the other
(λ = 0)

Eligibility traces offer an elegant algorithmic mechanism with
significant computational advantages (compared to n-step TD)

Only a single trace vector is required rather than a store of the last n
feature vectors
Learning also occurs continually and uniformly in time rather than
being delayed and then catching up at the end of the episode
Learning can occur and effect behavior immediately after a state is
encountered rather than being delayed n-steps
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The λ-return

How to interrelate TD and MC?

e.g., average one-step and infinite-step returns, G = (Gt +Gt:t+1)/2
An update that averages simpler component updates is called a
compound update

The TD(λ) algorithm can be understood as one particular way of
averaging n-step updates

Gλt = (1− λ)
∞∑
n=1

λn−1Gt:t+n

= (1− λ)
T−t−1∑
n=1

λn−1Gt:t+n + λT−t−1Gt
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Backup diagram for TD(λ)
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The weight distribution
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The forward view
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TD(λ): distribute the computation in each time step

The eligibility trace, z(s),∀s ∈ S, in each episode:

z0(s)← 0, ∀s ∈ S
zt(s)← γλzt−1(s) + I(St = s), ∀s ∈ S

The update rule for state-value function

δt = Rt+1 + γV (St+1)− V (St)

V (s)← V (s) + αδt · zt(s), ∀s ∈ S
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The backward view

True online TD(λ) algorithms...

TD(λ) for control: SARSA(λ), Q(λ)
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Learning objectives of this lecture

You should be able to...

Understand and be able to use the typical three RL algorithms: DP,
MC, and TD
Understand relationships and differences among the three algorithms

Know concepts of bootstrapping
Know concepts of model-free vs. model-based
Know concepts of on-policy vs. off-policy
Know concepts of prediction vs. control

Be aware of advanced TD methods, e.g., n-step TD, TD(λ)
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Volunteer Homework 1

Study the Q-learning algorithm in detail

Implement the Q-learning algorithm on the following two maze
navigation problems

The gray is obstacles, Ṡ and Ġ are start and goal, respectively
Use Python as the programming language

Write a report that introduces Q-learning and your experimentation

Explanations, steps, evaluation results, visualizations...
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THE END
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