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Model-based vs. Model-free

@ Model-based algorithms, e.g., dynamic programming
@ Require the prior knowledge of the environment's dynamics, the
complete probability distributions of all possible transitions
e In many cases, it is easy to generate experience sampled according to
the desired probability distributions, but infeasible to obtain the
distributions in explicit form

@ Model-free algorithms, e.g., Monte Carlo methods,
temporal-difference learning
e Require only experience — sample sequences of states, actions, and
rewards from actual or simulated interaction with an environment
e Learning from actual experience is striking because it requires no prior
knowledge of the environment's dynamics, yet can still attain optimal
behavior
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The term “Monte Carlo” (MC)

@ A broad class of computational algorithms that rely on repeated
random sampling to obtain numerical results

e Use randomness to solve problems that might be deterministic in
principle

@ The Law of Large Numbers: the basis for Monte Carlo simulations

o As the number of identically distributed, randomly generated variables
increases, their sample mean approaches their theoretical mean
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nte Carlo estimate of Pl

@ We can estimate pi to as many digits as we like by simply playing a
game of darts

o Generate random points within a box, and counting the number of
points which fall within an embedded circle
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Monte Carlo methods for RL

@ Based on averaging sample returns
o We define Monte Carlo methods only for episodic tasks, to ensure that
well-defined returns are available

o Incremental in an episode-by-episode sense, but not in a step-by-step
sense

o Average complete returns, as opposed to methods that learn from
partial returns, e.g., temporal-difference learning

Z Wang (NJU) Lecture 4: MC and TD Oct. 30th, 2022 6/71



Monte Carlo prediction

@ Considering Monte Carlo methods for learning the state-value
function for a given policy
o V. (s): the expected return—expected cumulative future discounted
reward—starting from s
o Estimate V,(s) from experience: simply average the returns observed
after visits to s
o As more returns are observed, the average should converge to the

expected value

VW(S) = EW[Gt|St = S]
= Er[Rir1 + YRiro + V2 Reyz + ...|S; = 3]
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Monte Carlo prediction

@ Some notations

e Each occurrence of state s in an episode is called a visit to s
e s may be visited multiple times in the same episode, we call the first
time it is visited in an episode the first visit to s

@ First-visit Monte Carlo method

o Estimate V,(s) as the average of the returns following first visits to s
e Have been most widely studied

@ Every-visit Monte Carlo method

o Average the returns following visits to s
o Extend more naturally to function approximation and eligibility traces
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First-visit MC prediction

First-visit MC prediction, for estimating V'

Input: a policy 7 to be evaluated

Initialize:
V(s) € R, arbitrarily, for all s € §
Returns(s) < an empty list, for all s € 8

Loop forever (for each episode):
Generate an episode following m: So, Ao, R1, 51, A1, Ra, ..., S7—1,Ar—1, Ry
G+0
Loop for each step of episode, t =T—1,T7-2,...,0:
G+ ’YG —+ Rf,+1
Unless S; appears in So, S1,...,Si—1:
Append G to Returns(St)
V(S;) + average(Returns(S))
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First-visit MC prediction

@ Both first-visit MC and every-visit MC converge to V;; as the number
of (first) visits to s goes to infinity

@ For first-visit MC
e Each return is an independent, identically distributed estimate of V.

with finite variance
e Each average is an unbiased estimate, and the standard deviation of its

error falls as 1/y/n
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Backup diagram for MC prediction

@ The root is a state node, and below it is the entire
trajectory of transitions along a particular single episode,
ending at the terminal state

the one episode s
e Opposed to DP that shows all max
. possible transitions a
@ MC goes all the way to the end A A Ar
I of the episode ,

? @ MC shows only those sampled on
(]

o Opposed to DP that includes
only one-step transitions
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Properties of MC

@ MC methods do not bootstrap

o Estimates for each state are independent

e The estimate for one state does not build upon the estimate of any
other state

@ The computational expense of estimating the value of a single state is
independent of the number of states

e This can make MC particularly attractive when one requires the value
of only one or a subset of states

e One can generate many sample episodes starting from the states of
interest, averaging returns from only these states, ignoring all others
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MC estimation of action values

o With a model
o State values alone are sufficient to determine a policy

@ Without a model
e One must explicitly estimate the value of each action in order for the
values to useful in suggesting a policy

@ A state-action pair (s, a) is said to be visited in an episode if ever the
state s is visited and action a is taken in it
e To help in choosing among the actions available in each state, we need
to estimate the value of all the actions from each state, not just the

one we currently favor
e This is the general problem of maintaining exploration
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Maintaining exploration

@ The assumption of exploring starts

e Specify that the episodes start in a state-action pair, and that every
pair has a nonzero probability of being selected as the start

o Guarantee that all state-action pairs will be visited an infinite number
of times in the limit of an infinite number of episodes

e Sometimes useful, but cannot be relied upon in general, particularly
when learning directly from actual interaction with an environment

@ The most common alternative approach to assuring that all
state-action pairs are encountered is to consider only policies that are
stochastic with a nonzero probability of selecting all actions in each
state

Z Wang (NJU) Lecture 4: MC and TD Oct. 30th, 2022 15/71



Monte Carlo control

o Construct each 7 as the greedy policy w.r.t. Qr,
Th1(s) = arg;nax Qr,(s,a)
@ Policy improvement theorem
Qi (5, Th+1(5)) = Qm, (5, arg max Qr (s, a)) = max Qr, (s, a)
> Qr (s, mi(s)) = Vr(s)

evaluation
o Use generalized policy iteration to approach @ ax
optimal policies
p p - Q
E

B I E I I, E s greedy
0 = Qug = T — Quy = T2 = oo = Ty — QN &W(O)

improvement
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MC with policy iteration

Monte Carlo ES (Exploring Starts), for estir

Initialize:
n(s) € A(s) (arbitrarily), for all s € 8
Q(s,a) € R (arbitrarily), for all s € 8, a € A(s)
Returns(s,a) < empty list, for all s € 8, a € A(s)

Loop forever (for each episode):
Choose Sp € 8, Ag € A(Sp) randomly such that all pairs have probability > 0
Generate an episode from Sy, Ao, following m: So, Ao, Ry, ..., Sr—1, Ar—1, Ry
G0
Loop for each step of episode, t =T—1,T-2,...,0:
G+ vG+ Ry
Unless the pair Sy, A; appears in Sy, Ag, S1, A1..., 51, Ar_1:
Append G to Returns(S, A¢)
Q(St, Ar) + average(Returns(St, Ar))
7(Sy) < argmax, Q(S;, a)

@ Two unlikely assumptions

e The episodes have exploring starts
e Policy evaluation could be done with an infinite number of episodes
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MC control without exploring starts

o Without the assumption of exploring starts
e If simply making the policy greedy w.r.t. the current value function, it
can meet the policy improvement theorem, but would prevent further
exploration of non-greedy actions

@ Use a soft policy
o m(als) > 0,Vs € S,a € A(s)
e Gradually shifted closer and closer to a deterministic optimal policy
e e-soft policies: m(als) > TAG]

@ c-greedy policy
o With probability €, select an action at random
e Otherwise, choose the greedy action
o An example of the e-soft policy, closest to greedy among e-soft policies
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MC control with soft polices

On-policy first-visit MC control (for e-soft policies), estimates 7

Algorithm parameter: small € > 0

Initialize:
m < an arbitrary e-soft policy
Q(s,a) € R (arbitrarily), for all s € §, a € A(s)
Returns(s,a) < empty list, for all s € 8, a € A(s)

Repeat forever (for each episode):
Generate an episode following 7: So, Ao, Ry,...,S7—1,Ar—1, Rp
G0
Loop for each step of episode, t =T—-1,T-2,...,0:
G+ G+ Ry
Unless the pair S¢, Ax appears in Sy, Ag, S1, A1 ..., Se—1, A¢—1:
Append G to Returns(Si, Ar)
Q(Si, Ay) + average(Returns(S;, A;))
A* «+ argmax, Q(Si,a) (with ties broken arbitrarily)
For all a € A(Sy):
1—e+¢e/|A(S:)| ifa=A*
(el 5] = { e /JA(S)) if a £ A"
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Policy improvement theorem for soft polices

@ For any e-soft policy, 7, any e-greedy policy, 7/, w.r.t. Q is
guaranteed to be better than or equal to 7

m(als)

£ ~ AT
> A > Qnls,a)+ (1 - E)Z — = @n(sa)
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MC in AlphaGo

ARTICLE

doi:10.1038/nature16961

Mastering the game of Go with deep
neural networks and tree search

David Silver'*, Aja Huang'*, Chris J. Maddison', Arthur Guez', Laurent Sifre', George van den Driessche',

Julian Schrittwieser!, loannis Antonoglou!, Veda Panneershelvam!, Marc Lanctot!, Sander Dieleman!, Dominik Grewe!,
John Nham?, Nal Kalchbrenner!, Tlya Sutskever?, Timothy Lillicrap!, Madeleine Leach!, Koray Kavukcuoglu!,

Thore Graepel! & Demis Hassabis!

Monte Carlo tree search (MCTS)!"!2 uses Monte Carlo rollouts
to estimate the value of each state in a search tree. As more simu-
lations are executed, the search tree grows larger and the relevant
values become more accurate. The policy used to select actions during
search is also improved over time, by selecting children with higher
values. Asymptotically, this policy converges to optimal play, and the
evaluations converge to the optimal value function'?. The strongest
current Go programs are based on MCTS, enhanced by policies that
are trained to predict human expert moves!®. These policies are used
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MC in AlphaGo

a Selection

b Expansion c Evaluation d Backup
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Figure 3 | Monte Carlo tree search in AlphaGo. a, Each simulation is evaluated in two ways: using the value network vg; and by running

traverses the tree by selecting the edge with maximum action value Q, arollout to the end of the game with the fast rollout policy py, then

plus a bonus u(P) that depends on a stored prior probability P for that computing the winner with function r. d, Action values Q are updated to

edge. b, The leaf node may be expanded; the new node is processed once track the mean value of all evaluations r(-) and ve(-) in the subtree below

by the policy network p, and the output probabilities are stored as prior that action.

probabilities P for each action. ¢, At the end of a simulation, the leaf node

Instead of brute forcing from millions of possible ways to find the right
path, Monte Carlo Tree Search algorithm chooses the best possible
move from the current state of the game's tree with the help of RL.
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Review

@ Monte Carlo methods

o Model-free, directly learn from experience
e Do not bootstrap

@ First-visit MC prediction i)
e Should maintain exploration for estimation of action values ®

@ MC control with exploring starts

o Can use a soft policy, i.e., e-greedy policy
e Meet the policy improvement theorem for e-soft policy

Z Wang (NJU)
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Temporal-Difference (TD) Learning

@ If one had to identify one idea as central and novel to RL, it would
undoubtedly be temporal-difference learning
e A combination of Monte Carlo ideas and dynamic programming ideas
o Like MC, TD can learn directly from raw experience without a model
of the environment’s dynamics (model-free)
o Like DP, TD updates estimates based in part on other learned
estimates, without waiting for a final outcome (bootstrap)
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@ MC and TD in common

o Use experience to solve the prediction problem, update their estimate
V of V. for the non-terminal state S; occurring in that experience

e MC: must wait until the return following the visit is known (end of an
episode), then use that return as a target for V(.S;)

V(St) < V(St) + Oé[Gt — V(St)]

@ TD: need to wait only until the next time step, use Riy1 + 7V (S¢+1)
as the target for V(S;), bootstrapping

V(St) = V(St) + a[Rii1 + 9V (Si1) = V(S)]
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Basic TD algorithm

Tabular TD(0) for estimating v,

Input: the policy 7 to be evaluated
Algorithm parameter: step size « € (0, 1]
Initialize V (s), for all s € 8T, arbitrarily except that V(terminal) = 0
Loop for each episode:
Initialize S
Loop for each step of episode:
A « action given by 7 for S
Take action A, observe R, S’
V(8) < V(S) +a[R+V(S) - V(9)]
S« 5
until S is terminal

e TD(0): A special case of the TD()\) method using eligibility trace

@ One-step TD: A special case of the n-step TD methods
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Deep insight of the Bellman equation

Vi(s) = Ex[Gi|S; = 5]
= Ex[Riy1 +7Gi11|St = §]
= Ex[Rit1 + YVa(St41)[S = 8]

= ZTI‘ als) Zp s’ rls,a)[r +yVa(s')]
a s'r

@ MC: The expected Gy is not known, a sample return is used in place
of the real expected return

@ DP: The true V; is not known, and the current estimate V(S 41) is
used instead

@ TD: It samples the expected values R;y1, and it uses the current
estimate V' (Sy41) instead of the true V
e Combine the sampling of MC with the bootstrapping of DP
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Backup diagram for TD(0)

@ The value estimate for the state node is updated on the
? basis of the one sample transition from it to the immediately
I following state
O

o Sample updates: based on a single sample successor,

TD(0) involve looking ahead to a sample successor state
S
max
a o Expected updates: based on a complete
A r distribution of all possible successors
OO OO OO0
DP
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@ The difference between the estimated value of S; and the better
estimate Ry+1 + YV (Si41)

6t = Rip1 + 9V (Se1) = V(S),  V(Si) < V(St) + ad
@ The MC error, with V' not updated during the episode

Gy — V(S) = Rip1 +7Giy1 — V(St) + 7YV (Ser1) — YV (Se41)
=0t + (G — V(St41))
= 0 + 0141 + 7 (Gea — V(Spi2))
=6+ 01 + o T + TG — V(ST))
=0t + Y01 + ... + ’YT_t_15T—1 + vT_t(O —0)
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Advantages of TD prediction methods

@ Compared to DP, do not require a model of the environment, of
its reward and next-state probability distribution

e In many cases, it is infeasible to obtain the distributions in explicit form

@ Compared to MC, wait only one time step instead of waiting until
the end of an episode
e Applications have very long episodes, or continuing tasks have no
episodes at all
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Convergence property of TD prediction

@ Are TD methods sound? Convergence guarantee?

o It is convenient to learn one guess from the next, without waiting for
an actual outcome

o We can still guarantee convergence to the correct answer

o For any fixed policy 7, TD(0) has been proved to converge to V;, in
the mean for a constant step-size parameter if it is sufficiently small,
and with probability 1 if the step-size parameter decreases according to
the usual stochastic approximation conditions
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nce guarantee of TD prediction

@ It is convenient to learn one guess from the next, without waiting for
an actual outcome, and we can still guarantee convergence to the
correct answer

e For any fixed policy 7, TD(0) has been proved to converge to V, in
the mean for a constant step-size parameter if it is sufficiently small,
and with probability 1 if the step-size parameter decreases according to
the usual stochastic approximation conditions

@ Use the Bellman equation for v,; as an update rule

Vir1(8) = Ex[Re+1 + yvi(Se41)[Se = $]
= ZW(Q\S) Z p(s',rls, a)[r + yvi(s)]

s',r

@ v, = v, is a fixed point for this update rule
o The sequence {vx} converges to v, as k — oo under the same
conditions that guarantee the existence of v,
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On-policy vs. off-policy

Target policy 7(als) Behavior policy b(als)
To be evaluated or improved To explore to generate data
Make decisions finally Make decisions in training phase

@ On-policy methods: 7(a|s) = b(als)
e Evaluate or improve the policy that is used to make decisions during
training
e e.g., SARSA
e Off-policy methods: m(a|s) # b(als)
o Evaluate or improve a policy different from that used to generate the
data
e Separate exploration from control
e e.g., Q-learning
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SARSA: On-policy TD control

@ We follow the pattern of generalized policy iteration
o Only this time using TD methods for the evaluation or prediction part
@ Learn the values of state-action pairs instead of a state-value function
o Consider transitions between state-action pairs

@ For an on-policy method, estimate (s, a) for the current behavior
policy 7 and for all state-action pairs

V(St) < V(St) + a[Rer1 + vV (St+1) — V(St)]

Q(St, Ap) < Q(St, Ar) + a[Rer1 +vQ(Sey1, Arr1) — Q(St, Ap)]

e e — ‘ .RHI. .RHZ. .Rt+3. *o———m - - -
Al At+1 AI+2 AI+3
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SARSA: On-policy TD control

Q(St, Ap) < Q(St, Ar) + a[Rip1 +vQ(S41, A1) — Q(St, Ay)]

@ This update is done after every transition from non-terminal state S;

o If S;yq is terminal, then Q(Sy+1, A¢11) is defined as zero
o Use every element of the quintuple of events, (S;, A¢, Rit1, St+1, At11)

I ? @ The theorems assuring the convergence of
? I state values under TD(0) also apply to the
° O corresponding algorithm for action values

Sarsa TD(0)
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SARSA algorithm

Sarsa (on-policy ntrol) for estimating Q -

Algorithm parameters: step size a € (0,1], small € > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’
Choose A’ from S’ using policy derived from @ (e.g., e-greedy)
Q(S, 4)  Q(S, 4) +a[R+1Q(S", A') — Q(S. 4)]
S+ 5 A+ Al
until S is terminal

@ Follow the pattern of generalized policy iteration

o Continually estimate @), for the behavior policy 7, and at the same
time change 7 toward greediness w.r.t. @,
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Convergence properties of SARSA

@ Let behavior policy m be greedy w.r.t. current action value function
o Meet the policy improvement theorem
o However, prevent further exploration of non-greedy actions

@ Instead, soft policies are favored
o e-greedy or e-soft policies

@ Convergence properties of SARSA depend on the nature of the
policy’s dependence on the action-value function Q
o SARSA converges with probability 1 to an optimal policy and
action-value function as long as all state-action pairs are visited an
infinite number of times and the policy converges in the limit to the
greedy policy (which can be arranged, for example, with e-greedy
policies by setting e = 1/t)
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Compare the convergence property of DP

o Use the Bellman equation for v; as an update rule

Vikt1(5) = Ex[Ret1 + yvi(Se41)|St = 5]
=Y w(als) > (s, rls, a)lr + yv(s")]

s',r

@ v, = v, is a fixed point for this update rule
o The sequence {v4} converges to v, as k — co under the same
conditions that guarantee the existence of v,

@ Using policy improvement theorem, we can obtain a sequence of
monotonically improving policies and value functions

E l E i E l E
O — Vrg = M1 —2 Vpy =2 T2 —7 oo —> Ty —> Vi

o This process is guaranteed to converge to an optimal policy and
optimal value function in a finite number of iterations
e Each policy is guaranteed to be a strictly improvement over the
previous one unless it is already optimal
o A finite MDP has only a finite number of policies
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Q-learning: Off-policy TD control

@ One of the early breakthroughs in RL was the development of an
off-policy TD control algorithm, known as Q-learning

Q(Si, Ay) — Q(St, Ap) + a[Riyq + fymgx Q(St+1,a) — Q(St, A)]

@ The learned action-value function, @), directly approximates the
optimal action-value function, ()., independent of the policy being
followed
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Q-learning: Off-policy TD control

Q(St, Ar) « Q(S1, Ar) + a[Rp + Y max Q(St+1,a) — Q(St, Ar)]
@ Use the Bellman optimality equation into an update rule

Qx(St; At) = Rypr + ymax Qu(Se41, @)

o Value iteration

Virs(s) = max 30 p(s' rls,a)lr+ 7wl

s'r

o Turn Bellman optimality equation into an update rule
o Directly approximate the optimal state-value function, v,
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Q-learning algorithm

Q-learning (off-policy TD control) for estimating 7 ~ .

Algorithm parameters: step size a € (0, 1], small £ > 0
Initialize Q(s, a), for all s € 81,a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:

Initialize S

Loop for each step of episode:
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) < Q(S, A) + a[R+ymax, Q(S',a) — Q(S, A)]
S+ 5

until S is terminal
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The reason for “off-policy”

Q(St, Ap) = Q(St; Ap) + a[Rep1 +ymax Q(Sit1, @) — Q(Sh, Ar)]

@ Q-learning approximates the optimal action-value function for an
optimal policy, @ ~ Q. = Q.
o The target policy is greedy w.r.t Q, m(als) = argmax, Q(s,a)
o The behavior policy can be others, e.g., b(a|s) = e-greedy

Q(St, Ap) « Q(Si, Ap) + a[Rip1 + vQ(Si41, A1) — Q(St, Ay)]

@ SARSA approximates the action-value function for the behavior
policy, @ = Qr = Qs
o The target and the behavior policy are the same, e.g.,
m(als) = b(als) = e-greedy
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Convergence properties of Q-learning

@ All state-action pairs are visited an infinite number of times
e This a minimal requirement in the sense that any method guaranteed
to find optimal behavior in the general case must require it
o Under this assumption and a variant of the usual stochastic
approximation conditions on the sequence of step-size parameters, @
has been shown to converge with probability 1 to Q.

o Use the Bellman equation for v, as an update rule

Vk+1(5) = Ex[Res1 + Yvk(Se41)|Se = 8]

= 7(als)Y_ (s’ rls, a)lr +yw(s)]
a s'r
@ v, = v, is a fixed point for this update rule

o The sequence {v4} converges to v, as k — co under the same
conditions that guarantee the existence of v,
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Example: Cliff walking

R=-1

Safer path

Optimal path

y—

The Cliff

S
\Z§

R=-100

@ The usual action causing movement up, down, right, and left

@ r = —1 on all transitions except those into the region marked “The
Cliff". Stepping into this region incurs a reward of —100 and sends
the agent instantly back to the start.

@ With e-greedy action selection, € = 0.1
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On-policy vs. Off-policy learning

R=-1 Sarsa
Safer path »
Sumof s
. rewards Q-learning
Optimal path | * during
B episode
s The Cliff G peose s
100+ T T T T 1
R=-100 0 100 200 300 400 500

Episodes

@ Q-learning learns values for the optimal policy, traveling right along
the edge of the cliff

o Occasionally fall off the cliff because of the e-greedy action selection

@ SARSA takes the action selection into account and learns the longer
but safer path through the upper part of the grid
e Q-learning's online performance is worse than that of SARSA
e If € is gradually reduced, both methods would asymptotically converge
to the optimal policy
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Code example for maze navigation

class QLearning(object):
def __init__(self, env, gamma=0.99, 1r=0.1):
super(QLearning, self).__init__Q
self.gamma = gamma; self.lr = 1lr; self.env = env
self.Q = np.zeros((env.observation_space.n, env.action_space.n))

de

1L

greedy(self, s, Q:
candi_actions = []
Qmax = -np.inf 12
for a in range(self.env.action_space.n): m
if Q[s, a] > Qmax:
candi_actions = []; candi_actions.append(a)
Qmax = Q[s, a]
elif Q[s, a] == Qmax:
candi_actions.append(a)
return np.random.choice(candi_actions)

# epsilon-greedy policy
def pi(self, s, epsilon=0.1):
if np.random.random() < epsilon:
### random action
return self.env.action_space.sample()
else:
### epsilon greedy
return self.greedy(s, self.Q)

(o fw|afn]|a[a]e]|e

def step(self, s, a, r, s_next):
Qmax_s_next = np.max(self.Q[s_next])
self.Q[s, a] += self.lr * (r + self.gamma * Qmax_s_next - self.Q[s, al])
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Code example for maze navigation

learner = QLearning(env, gamma=gamma, lr=1r)

# record the navigation steps in each episode
steps = np.zeros(max_epochs)

for epoch in tqdm(range(max_epochs)):
s = env.reset()
for step in range(max_steps):

12
11

# selection action according to epsilon-greedy policy
a = learner.pi(s, epsilon=epsilon)

# interact with the environment
s_next, r, done, _ = env.step(a)

1
1
1

# update Q-function
learner.step(s, a, r, s_next)

St

= nfw|afn]|a|a|e|e

# whether transit to the terminal state
if done: break

# transit to next state
s = s_next

steps[epoch] = step
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Review

@ TD learning
o A combination of DP (bootstrap) and MC

(model free)
o Guarantee convergence under certain I
assumptions I
@ On-policy vs. off-policy control
° O

e SARSA: on-policy, behavior policy = target
policy

e Q-learning: off-policy, behavior policy #
target policy
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Combine MC and one-step TD

@ Neither MC or one-step TD is always the best, we generalize both
methods so that one can shift from one to the other smoothly as
needed to meet the demands of a particular task

@ One-step TD: In many applications, one wants to be able to update
the action very fast to take into account anything that has changed

@ However, bootstrapping works best if it is over a length of time in
which a significant and recognizable state change has occurred

n=1|n-stepTD | n=00

TD(0) < MC
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n-step TD prediction

@ Perform an update based on an intermediate number of rewards,
more than one, but less than all of them until termination

1-step TD co-step TD
and TD(0) 2-stepTD  3-step TD n-step TD  and Monte Carlo

7
!

O

O—e—0O———0
o—(O—o—0O—e—0

OO0
o—D+—0+—D+—0+—D—o—1

O—se ---

O—e -
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Recall MC and TD(0) updates

@ In MC updates, the target is the complete return
Gy =Riy1 +yRepa + ...+ "Ry

V(St) < V(St) + G([Gt — V(St)]
= V(St) + Oé[Rt+1 + ’YRt+2 + ...+ ’YTiHlRT - V(St)]

e In TD(0) updates, the target is the one-step return
Gitv1 = Riy1 + 7V (Se41)

V(Sy) < V(Sy) + a[Gri11 — V(Sy)]
=V(S) + a[Rip1 + 7V (Siv1) = V(S)]
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n-step TD update rule

@ For n-step TD, set the target as the n-step return
Gritn = Rip1 +YRipa + o + 9" ' Rijn + YV (St4n)

@ All n-step returns can be considered approximations to the complete
return, truncated after n steps and then corrected for the remaining
missing terms by V (Siyy,)

V(Sy) < V(St) + a[Gritn — V(St)]
=V (S) + a[Rit1 +yRiso + o +9" ' Ripy + 9"V (Segn) — V(Sy)]
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n-step TD algorithm

n-step TD for estimating

Input: a policy

Algorithm parameters: step size « € (0, 1], a positive integer n

Initialize V'(s) arbitrarily, for all s € §

All store and access operations (for S; and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal

T + o
Loop for t =0,1,2,...:
| Ift <T, then:

| Take an action according to 7 (-|St)

| Observe and store the next reward as R;+1 and the next state as Syy1
| If Si4q is terminal, then 7" <— ¢ + 1

| 7+ t—n+1 (7 is the time whose state’s estimate is being updated)

| If7>0:
|

|

|

G s,
If 7+n <T, then: G < G+7"V(Srin) (Grirgn)

V(Sr) < V(S;) +a[G—V(S;)]
Until =T -1
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n-step TD for on-policy control: n-step SARSA

1-step Sarsa
aka Sarsa(0) 2-step Sarsa 3-step Sarsa

|
[ 1

I
[

O<—O<—Q<—O<—Q<—O
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n-step Sarsa

I

o—0O—e—0

.4_04_.

oo-step Sarsa
aka Monte Carlo

I

e - e—O—e—0
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From n-step TD prediction to n-step SARSA

@ The main idea is to simply switch states for state-action pairs, and
then use an e-greedy policy

@ re-define n-step returns (update targets) in terms of estimated action
values

Giiyn = Rij1 +YRiso + .. 9" *Resn + 7" Q(Stim, Atin)

Q(St, Ap) + Q(St, Ar) + a[Gropvn — Q(St, Ar)]
=Q(St,A¢)+a[Ris1+ .. +7" " Resn+7"Q(Stqm Arin) — Q(St, Ay
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n-step SARSA algorithm

n-step Sarsa for

Initialize Q(s, a) arbitrarily, for all s € 8,a € A

Initialize 7 to be e-greedy with respect to @, or to a fixed given policy

Algorithm parameters: step size a € (0,1], small € > 0, a positive integer n

All store and access operations (for Sy, A;, and R;) can take their index mod n + 1
Loop for each episode:

Initialize and store Sy # terminal
Select and store an action Ay ~ 7(-|Sp)

T+ o
Loop for t =0,1,2,...:
| Ift < T, then:

| Take action A;

| Observe and store the next reward as Ry4; and the next state as Si41
| If S;41 is terminal, then:

| I =Rl

| else:

| Select and store an action A,y ~ 7(+|Si41)

| 7 t—n+1 (7isthe time whose estimate is being updated)

| Ifr>0:

| Ge Ty R,

| If 7+n < T, then G+ G+ 7"Q(Srin: Arin) (Grirtn)
| Q(5,Ar) + Q(Sr, Ar) + a[G — Q(Sr, Ar)]

| If 7 is being learned, then ensure that 7(:|S;) is e-greedy wrt Q
UntilTr=T-1
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Eligibility traces: unify/generalize TD and MC

@ Almost any TD method can be combined with eligibility traces to
obtain a more general method that may learn more efficiently

e e.g., the popular TD(\) algorithm, X refers the use of an eligibility trace

e Produce a family of methods spanning a spectrum that has MC
methods at one end (A = 1) and one-step TD methods at the other
(A=0)

o Eligibility traces offer an elegant algorithmic mechanism with
significant computational advantages (compared to n-step TD)

e Only a single trace vector is required rather than a store of the last n
feature vectors

o Learning also occurs continually and uniformly in time rather than
being delayed and then catching up at the end of the episode

o Learning can occur and effect behavior immediately after a state is
encountered rather than being delayed n-steps
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@ How to interrelate TD and MC?

o e.g., average one-step and infinite-step returns, G = (G; + Gt.441)/2
e An update that averages simpler component updates is called a
compound update

@ The TD(A) algorithm can be understood as one particular way of
averaging n-step updates

o

Gi\ = (1 - )‘) )‘n_th:t—i—n

L
Ll

—1
= (1 - >\) )\n_th:t+n + )\T_t_th

S
Il
—
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Backup diagram for TD(\)

TD())
> 9 7
oo Al
L B O
O . T
(=22 CIE ? Ago
O
(1= )2 Ap_,
S -1 BRI i A
e

Figure 12.1: The backup digram for TD(A). If A = 0, then the overall update reduces to its
first component, the one-step TD update, whereas if A = 1, then the overall update reduces to
its last component, the Monte Carlo update.
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The weight distribution

weight given to
e the 3-step return total area = 1

is (1—\)\?

decay by A
Weighting  1-a weight given to
actual, final return
is ATt

Time ——

Figure 12.2: Weighting given in the A-return to each of the n-step returns.
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The forward view

Figure 12.4: The forward view. We decide how to update ecach state by looking forward to
future rewards and states.
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TD(\): distribute the computation in each time step

@ The eligibility trace, z(s),Vs € S, in each episode:

20(s) <0, VseS
2e(8) < YAzem1(s) +1(Sp =), VseS

@ The update rule for state-value function
0t = Rep1 + 9V (Seq1) = V(Sy)

V(s) «+ V(s)+ads-z(s), VseS
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The backward view

Zt,

Time

Figure 12.5: The backward or mechanistic view of TD()). Each update depends on the current
TD error combined with the current eligibility traces of past events.

@ True online TD(\) algorithms...
e TD(A) for control: SARSA(A), Q(A)
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Learning objectives of this lecture

@ You should be able to...

e Understand and be able to use the typical three RL algorithms: DP,
MC, and TD
e Understand relationships and differences among the three algorithms

Know concepts of bootstrapping

Know concepts of model-free vs. model-based
Know concepts of on-policy vs. off-policy
Know concepts of prediction vs. control

e Be aware of advanced TD methods, e.g., n-step TD, TD(\)
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Volunteer Homework 1

@ Study the Q-learning algorithm in detail

o Implement the Q-learning algorithm on the following two maze
navigation problems

o The gray is obstacles, S and (3 are start and goal, respectively
o Use Python as the programming language

@ Write a report that introduces Q-learning and your experimentation
e Explanations, steps, evaluation results, visualizations...

g et
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THE END
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