Lecture 5: Introduction to Deep Reinforcement

Z Wang (NJU)

Learning

Zhi Wang

School of Management and Engineering
Nanjing University

July 1st, 2022

Introduction to DRL

July 1st, 2022

1/48



Table of Contents

© From Tabular Algorithms to Deep RL

Z Wang (NJU) Introduction to DRL July 1st, 2022 2/48



For large/continuous state/action spaces

@ Curse of dimensionality: Computational requirements grow
exponentially with the number of state variables

e Theoretically, all state-action pairs need to be visited infinite times to
guarantee an optimal policy

e In many practical tasks, almost every state encountered will never have
been seen before

@ Generalization: How can experience with a limited subset of the
state space be usefully generalized to produce a good approximation
over a much larger subset?
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Curse of dimensionality
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@ In discrete case, represent V(s) as a table

o 16 states, 4 actions per state
o can store full V(s) in a table
o iterative sweeping over the state space

o An image
° ‘S| — (2553)200><200
e more than atoms in the universe
e can we store such a large table?
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Function approximation

o It takes examples from a desired function (e.g., a value function) and
attempts to generalize from them to construct an approximation to
the entire function

o Linear function approximation: V(s) =Y. ¢;(s)w;

o Neural network approximation: V(s) = Vj(s)
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Function approximation

@ Function approximation is an instance of supervised learning, the
primary topic studied in machine learning, artificial neural networks,
pattern recognition, and statistical curve fitting

o In theory, any of the methods studied in these fields can be used in the
role of function approximator within RL algorithms

e RL with function approximation involves a number of new issues that
do not normally arise in conventional supervised learning, e.g.,
non-stationarity, bootstrapping, and delayed targets
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Deep reinforcement learning = RL + Deep learning

@ The revolution of Deep Learning
e Turing award 2018 to deep learning godfathers

@ DRL = theories of RL + the help of deep function approximators

Yoshua Bengio Geoffrey Hinton Yann LeCun
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Deep reinforcement learning (DRL)
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The anatomy of a DRL algorithm

fit a model/
estimate the return

generate samples
(i.e. run the policy)

improve the policy

o Following the Generalized Policy Iteration framework

o ... Generate samples => Policy evaluation => Policy improvement ...

E 1 E 1 E 1 E
T — Voo =M1 — Vo =2 — 2w — Vi
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Types DRL algorithms

0" =argmaxE__, (8¢, ap)
>

o Policy gradients: Directly approximate the policy and differentiate
the above objective

@ Value function-based: Estimate state- or action-value function or of
the optimal policy (no explicit policy)

@ Actor-critic: Estimate state- or action-value function or of the
current policy, use it to improve policy

@ Model-based RL: Estimate the transition model, p(s’, r|s, a)
o Use it for planning (no explicit policy), use it to improve a policy, etc
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|. Directly approximate policies

s — state
0 — observation mg(a|os) — policy
a; — action mo(as|sy) — policy (fully observed)

@ Usually using deep neural networks
@ Optimize the policy network by backpropagation
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|. Directly approximate policies

fit a model/ evaluate returns
estimate the return [FiSEES Zt r(st, at)

generate samples

(i.e. run the policy)

improve the policy [RelZES anE[Zt r(st, a)]
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Il. Approximate value functions
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@ Usually using deep neural networks
@ Optimize the deep Q-network by minimizing the Bellman residual
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Il. Approximate value functions

fit a model/ fit V(S) or Q(S, a)

estimate the return

generate samples
(i.e. run the policy)

IR set 7(s) = arg maxa Q(s, a)
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two network design

shared network design

mo(als) S
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I1l. Approximate b

fit a model/ fit V(s) or Q(s,a)

estimate the return

generate samples

(i.e. run the policy)

TIORGOS 0 < 0 + aVoE[Q(st, at)]
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DRL - Model-based

fit a model/

learn p(s¢y1]st, a
estimate the return P(serlst, ar)

generate samples
(i.e. run the policy)

(RGN o fow options
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DRL - Model-based

(]SRRI IO o few options

@ Just use the model to plan (no explicit policy)
e Trajectory optimization / optimal control
o Discrete planning in discrete action spaces, e.g., Monte Carlo tree
search
@ Backpropagate gradients into the policy
@ Use the model to learn a value function
e Dynamic programming
o Generate simulated experience for model-free learner
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Why so many DRL algorithms?

@ Different tradeoffs

e Sample efficiency — model-based
o Stability & easy to use — model-free

o Different assumptions ﬁ S
e Stochastic or deterministic?
e Continuous or discrete? l

e Episodic or infinite horizon?

@ Different things are easy or hard in ;

different settings

e Easier to represent the policy?
e Easier to represent the model?
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Comparison: Sample efficiency

@ Sample efficiency = how many
samples do we need to get a good
policy?

generate
samples (i.e.
run the policy)

fit a model/
@ Most important question: is the

algorithm off-policy? l

improve the
o Off-policy: able to improve the

policy without generating new 0« 0+ aVeE[Y, r(st, at))
samples from that policy
e On-policy: each time the policy is

changed, even a little bit, we need to
generate new samples

just one gradient step
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Comparison: Sample efficiency

Off-policy tm—

More efficient
(fewer samples)

P> on-policy

Less efficient
(more samples)

<
model-based  model-based off-policy actor-critic  on-policy policy
shallow RL deep RL Q-function style gradient
learning methods algorithms
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Comparison: Stability and ease of use

@ Does it converge?
@ And if it converges, to what?
@ And does it converge every time?

Why is any of this even a question???
@ Supervised learning: almost always gradient descent
@ Reinforcement learning: often not gradient descent

e Q-learning: Bellman fixed point iteration
o Model-based RL: model is not optimized for expected reward
e Policy gradient: is gradient descent, but also often the least efficient!
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Comparison: Stability and ease of use

@ Value function fitting
o At best, minimizes error of fit (“Bellman error”), not the same as
expected reward
o At worst, doesn't optimize anything. Many popular deep RL value
fitting algorithms are not guaranteed to converge to anything in the
nonlinear case
@ Model-based RL
o Model minimizes error of fit. This will converge.
e No guarantee that better model = better policy
@ Policy gradient
e The only one that actually performs gradient descent (ascent) on the
true objective
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Comparison: Assumptions

@ Common assumption 1: full observability
o Generally assumed by value function fitting
methods
e Can be mitigated by adding recurrence
@ Common assumption 2: episodic learning
o Often assumed by pure policy gradient
methods
e Assumed by some model-based RL methods
@ Common assumption 3: continuity or
smoothness
e Assumed by some continuous value function
learning methods

e Often assumed by some model-based RL
methods

Z Wang (NJU) Introduction to DRL July 1st, 2022 26 /48



Examples of specific algorithms

o Policy gradient methods
e REINFORCE
e Natural policy gradient
e Trust region policy optimization
@ Value function fitting methods
o Fitted value iteration, fitted Q-iteration

o Deep Q-network, deep Q-learning We'll learn about

most of these in the

@ Actor-critic algorithms next few weeks!

o Deep deterministic policy gradient (DDPG)
o Asynchronous advantage actor-critic (A3C)
e Soft actor-critic (SAC)

@ Model-based RL algorithms

e Dyna
e Guided policy search
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Example 1: walking with policy gradients

@ High-dimensional continuous
control with generalized
advantage estimation

@ Trust region policy
optimization (TRPO) with
value function approximation
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Example 2: Atari games with deep Q-networks

o Playing Atari with deep
reinforcement learning

@ Q-learning with convolutional
neural networks
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Example 3: robots and model-based RL

2018 IEEE Robotics
May 2125, 2018, Brisbane, Australia

Neural Network Dynamics
for Model-Based Deep Reinforcement Learning

e with Model-Free Fine-Tunin;
@ End-to-end training of deep e
Anusha Nagabandi, Gregory Kahn, Ronald S. Fearing, Sergey Levine

visuomotor po licies University of Califoria, Berkeley
@ Guided policy search

(model-based RL) for image

based robotic manipulation
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Imitation learning - Imitating expert demonstrations

supervised

training learning

data

7r9(at|ot)

@ Behavior cloning

@ Supervised training has better stability than many RL methods
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Recall: supervised learning

Input ,IJ‘ Output

i Target function

. Aeh
xe X Learned Model ye y
y =8(x) _
An item x Anitemy
drawn from an drawn from a label

instance space X space Y

@ We need to choose what kind of model we want to learn
o Linear model, nonlinear model...
e Parametric model, nonparametric model...
@ Decision trees, neural networks, Gaussian processes...
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The original deep imitation learning system

ALVINN: Autonomous Land Vehicle In a Neural Network
1989

30 Output
0 e

Input Retina
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Deep imitation learning system

@ Input: states/observations o,

e Output: actions a; = my(+|oy)

o Label/ground truth: actions a; provided by human

— training trajectory
— 79 expected trajectory
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The original deep imitation learning system

Recorded
steering
wheel angle | Adjust for shift Desired steering command
and rotation
Network
steering
Random shift command
and rotation | " | s 4’(‘
Right camera 1
Back pi i Error
weight adjustment
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Challenge: distribution shift

@ Error accumulates fast in a trajectory and put us into situations that
we never deal with before

e Analogous to the key challenge in mode-based RL

= training trajectory
— Ty expected trajectory

N 7r9(at|0t)
o5
W

N Pdatal0t)-

>
m\ ///fmn
. \7EI &
TN //w/i 0 7

Can we make pg,i0(0t) = pry(04)?

Z Wang (NJU) Introduction to DRL July 1st, 2022



Alternative solution

Can we make pgaia(0t) = pr,(01)7?

Idea: instead of being clever about p,,(0:), be clever about pgata(0+)

DAgger: Dataset Aggregation

Goal: collect training data from p.,(0:) instead of pgaiqa(0t)
How? Just run p,, (o)
But need labels a;!

1. train mg(at|o;) from human data D = {01,a1,...,0n,an}
2. run mp(az|oy) to get dataset Dy = {01,...,0}

3. Ask human to label D, with actions a;

4. Aggregate: D < DUD,
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What is the problem?

@ One of the biggest challenge is collecting expert demonstrations
@ Unless it has a huge business potential, the attached cost can be
prohibitive
@ The trained policy is only as good as the demonstrations
o Initialize a policy from expert demonstrations, finetune it using RL

1. train mg(at|o;) from human data D = {01,a1,...,0n,an}
2. run mp(az]o;) to get dataset Dy = {01,...,05}

[3. Ask human to label D, with actions a; ]

4. Aggregate: D <+ DUD,
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Deep imitation learning in practice

tory

ed trajectory

@ DAgger addresses the problem of
distributional “drift” , oy To(aloy)

@ Need to mimic expert behavior very
accurately

e But don't overfit
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Why might we fail to fit the exp

@ RL: temporally correlated
@ Imitation learning: Non-Markovian behavior

mo(at|o) mp(az|o1, ..., 0)
behavior depends only behavior depends on
on current observation all past observations

If we see the same thing

twice, we do the same thing Often very unnatural for
twice, regardless of what human demonstrators
happened before

July 1st, 2022
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Recall: Markov property

p(s',rls,a) = Pr{S; = s, Ry = r|S;_1 = s, Ay_1 = a}

Z Zp(s’,r|s,a) =1, VseS,aec A(s)

s'eSreR

@ The probabilities given by p completely characterize the
environment’s dynamics
o Markov Property
e The probability of each possible value for S; and R; depends only on
the immediately preceding state S;_; and action A;_1, not at all on
earlier states and actions
° P(St,Rt|St—1,At—1) =
p(ShRtlstflvAtflaSt727At72aSt73aAt73a )

@ Recall supervised learning p(X;|X;) =0
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How can we use the whole history

@ Use multiple frames as the input

@ The input dimension will be too high

variable number of frames,
too many weights

Z Wang (NJU) Introduction to DRL July 1st, 2022 43 /48



How can we use the whole history?

@ Use recurrent neural network (RNN) as the encoder

@ Embed the summary of past states into the internal memory

i

RNN state

Typically, LSTM cells work better here
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Review: Imitation learning

training supervised

data learning 0 (at |ot)

e Often (but not always) insufficient by itself
e Distribution mismatch problem
@ Sometimes work well

e Samples from a stable trajectory distribution
e Add more on-policy data, e.g., using Dagger
o Better models that fit more accurately
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Learning objectives of this lecture

@ You should be able to...

e Understand the function approximation mechanism for RL problems
with large or continuous state-action spaces

e Know the main types of DRL algorithms, and their differences

e Understand the anatomy of imitation learning
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THE END
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