Z Wang (NJU)

Lecture 6: Policy Gradients

Zhi Wang

School of Management and Engineering
Nanjing University

July 1st, 2022

Policy Gradients

July 1st, 2022

1/58

What we'll cover

— Contents

@ The policy gradient algorithm

@ What does the policy gradient do?
@ Basic variance reduction: causality
@ Basic variance reduction: baselines

@ Policy gradient examples

— Goals
@ Understand policy gradient RL

@ Understand practical considerations for policy gradients

Z Wang (NJU) Policy Gradients July 1st, 2022 2/58

Table of Contents

0 Formulation of policy gradient

Z Wang (NJU) Policy Gradients July 1st, 2022 3/58

Review: the goal of RL

@ Find optimal policies to maximize cumulative reward

o)
7 = arg maxE, E vor(se, ar)
T t=0

e In a trial-and-error manner
o A general optimization framework for sequential decision-making

2 @) <
o N
2 N
o) S e
P(st+1lst, ar) j/ P(se+1lse. ar)
T

(S0, ao) r(51,a1)

Z Wang (NJU) Policy Gradients July 1st, 2022 4/58

The goal of RL

we’ll come back to partially observed later

ot

pé)(T) :PH(SO,CLO, ST,CLT 50 Hﬂe at\St St+1|5t7at)

0" = argmaxE,.,, () lz'y r(st,at)] =argmaxE, ., lZ’y r st,at)]

feRrR? t OeR? t

Z Wang (NJU) Policy Gradients July 1st, 2022 5/58

Discrete action space: Categorical distribution

o Categorical distribution for the finite number of actions
@ What is Categorical distribution?

Z Wang (NJU) Policy Gradients July 1st, 2022 6/58

Discrete action space: Categorical distribution

@ A discrete probability distribution that describes the possible results
of a random variable that can take on one of k possible categories,
with the probability of each category separately specified

@ k > 0: number of categories mo(als)

@ p1, ..., k. event probabilities 2

°pi >0, ,;pi=1 o (axls)
parameters 6

Z Wang (NJU) Policy Gradients July 1st, 2022 7/58

Continuous action space: Gaussian distribution

@ k > 0: the dimension of action space, a = [ay, ..., a;] € R”

@ The Gaussian policy: mg(als) = N (ug(s); 2)

Z Wang (NJU) Policy Gradients July 1st, 2022 8/58

The goal of RL

0" = argmaxE, ., (7 [Z (s, at)]
OcRd t

@ Infinite horizon case

0" = arg ;nax E(s,a)wmg(s,a) [T‘(S, a)]

@ Finite horizon case

T
9* = arg;’rlax E(st,at)Nﬂe(Stﬂt) [Z ’YtT(Sty a/t)]
t=0

Z Wang (NJU) Policy Gradients July 1st, 2022 9/58

Evaluating the objective

PERE

0" = argmaxE, (7 [Z'y r(st, at] %{/\J

J(6)

J(O) =Erry(r [ZVTSt,at] N*ZZWT%%

T
sum over samples from 7y

Z Wang (NJU) Policy Gradients July 1st, 2022 10 /58

Direct policy differentiation

@ Objective function / cost function

JO) =Byl 1(1) 1= / ro(r)r(r) dr
o r(st,ar)

@ The gradient — differentiate the objective function

VoJ (0 /V@?Tg T)dr = /W@(T)Vg log wg(7)r(r)dr
TNﬂg(T)[VG logm;() (T)]

@ A convenient identity

Z Wang (NJU) Policy Gradients July 1st, 2022 11/58

Direct policy differentiation

> VQJ(G) =]E‘r~7r3 (7) [VG log e (T)T(T)]

mo(80, a0, -, ST, 0T) = P(50) Hwe ag|se)p(Ses1]st, ar)

7o (T)
T
Ve logme(r) = Vg [logp 50 +Z log T (axst) +10gp(st+15t7at)]]
=0

T
=Vy Z log g (at|st)
t=0

> VoJ(O)=E,. ., () [(ZV@ logw@(at|st)> (Z,},tr(st,at)>‘|

t=0

Z Wang (NJU) Policy Gradients July 1st, 2022 12 /58

Evaluating the policy gradient

J(@) = E‘rfvpg(‘r) [Zt 7tT(St7 ai)] ~ % Zz Et WtT(S%.’ a%)

T T

Vod (0)=Erry(r) [(Z Vo log 7re(atSt)) (Z yr(st, at))}
t=0

Z <Z Vo log g (al|st)

i= t=0

0« 0+aVeJ(0)

) (i)

3.0 60+aVeJ(0)

REINFORCE algorithm. Loop:
1. sample {7%} from mg(a¢|s:) (run the policy)

2. Vo (0) » 32, (X, Ve log ma(arsi)) (X, (st ai))

Z Wang (NJU)

Policy Gradients

-

Policy
evaluation

Run the policy
to generate

samples

Policy
improvement

July 1st, 2022 13 /58

Table of Contents

© Understanding policy gradient

Z Wang (NJU) Policy Gradients July 1st, 2022 14 /58

Evaluating the policy gradient

J(0) = Erpe(r) [Zt T(Stvat)] ~ % DIDI ’ytr(si,ai)

T
VQJ(G) :]ETNWQ(T) [(Z V.g logﬂg at\st)(Z'y I st,at >:| %

= L
1 N T v T R E
25 (z Vo log o (als})) (zw)
i=1 \t=0 t=0
What is this?

Z Wang (NJU) Policy Gradients July 1st, 2022 15 /58

Comparison to maximum likelihood

@ Policy gradient: VyJ(0) ~ + Ziv:l (ZtT:O Vo log we(aﬂsi)) (Z?:o ’ytr(si,ai))

@ Maximum likelihood estimation: Vo.J(0) ~ + Zfil (Z?:o Vo logﬂg(aﬂsi))

training supervised

data learning mo(arst)

Z Wang (NJU) Policy Gradients July 1st, 2022 16 /58

Maximum likelihood estimation (MLE)

@ A method of estimating the parameters of a probability ™~
distribution by maximizing a likelihood function f;\
|

|
e So that under the assumed statistical model, the |
observed data is most probable fa(x)

@ For regression problem, input-label (z,y), prediction § = fp(x)
likelihood: 6 = arg max TLA (y;; fo(2;), 02)
feRrd

negative log-likelihood: = arg mmz — fo(zi))
HeRd :

Z Wang (NJU) Policy Gradients July 1st, 2022 17 /58

Maximum likelihood estimation (MLE)

@ For classification problem, input-label (z,y), prediction py(y|x)

@ Cross-entropy loss, minimize the negative log-likelihood:

o* —argmmz —yilog pe(d; = 1]s) — (1— ;) log(1 — po(ji = /7))
HERd -

P = 1|x)

p(= 0lx)

Z Wang (NJU) Policy Gradients July 1st, 2022

Maximum likelihood estimation — Imitation learning

@ Maximum likelihood estimation: Vo.J(0) ~ & SN | (EtT:o Vo logwe(aﬂsi)>

@ Review: Imitation learning — Imitating expert demonstrations (s}, a})
o Maximizing the likelihood function 7y (ai|s?)

o Under the assumed statistical model 6,
the expert demonstrations are most probable

supervised

training learning

data

mo(as|st)

Z Wang (NJU) Policy Gradients July 1st, 2022 19 /58

Comparison to maximum likelihood

@ Policy gradient: VgJ(0) ~ + PR (Z?:o Vo log 7r9(aﬂsi)) (Z?:o Wtr(si,ai))
o Make what most probable?
@ Maximum likelihood estimation: Vo.J(0) ~ + Zfil (ZtT:o Vo logﬂg(aﬂsi))

o Make every demonstration most probable

supervised

training learning

data

Fg(a”st)

Z Wang (NJU) Policy Gradients July 1st, 2022 20 /58

What did we just do?

N
Vo J(0 %Z <ZV(9 log 7 (at|st) > (Z'y (st al)

=1 \t=0

@ Policy gradient: VoJ(0) ~ SN, 2T Wy log mo(79)r ()

o large r(7%): push my(7%) close to 1, good stuff is made more likely
o small r(7%): push my(7?) close to 0, bad stuff is made less likely
e simply formalizes the note of “trial and error”

REINFORCE algorithm: Loop:

1. sample {7%} from mg(a¢|s:) (run the policy) ﬂ
2. VoI (6) = (5, Vo logmo(ailsh)(S, ' r(stab) | @

3.0 04aVeJ(0)

Z Wang (NJU) Policy Gradients July 1st, 2022 21/58

Discrete action space: Categorical distribution

@ A discrete probability distribution that describes the possible results
of a random variable that can take on one of k possible categories,
with the probability of each category separately specified

@ k > 0: number of categories o (als)

® p1,...,Dk: event probabilities 2 .

°p; >0,> pi=1 To(acls)
parameters 0

Z Wang (NJU) Policy Gradients July 1st, 2022 22 /58

Discrete action space: Categorical distribution

torch
torch.nn nn
torch.nn. functional F
torch.distributions Categorical
(Policy):
__init__(’ ’):

super(CategoricalMLPPolicy, self).__init__()

self.input_layer = nn.Linear(state_dim,)
self.hidden_layer = nn.Linear(7)
self.output_layer = nn.Linear(, num_actions)

forward(5 5 =None):
states: (time_horizon * batch_size x state_dim) tensor of states

x = self.input_layer(states)
x = F.relu(x)

x = self.hidden_layer(x)

x = F.relu(x)

probabilities for discrete actions
logits = self.output_layer(x)

Categorical(=logits)

Z Wang (NJU) Policy Gradients July 1st, 2022 23/

Continuous action space: Gaussian distribution

N
1
Vo J(0) ~ N (Zve log m (at|st)) (Z’Y r(si, ap))

t=0

o example: my(alsy) = N (o (s1); %)

o logmg(ar|s:) = —3|ma(s:) — ar||% + const

@ Vylogmg(as|s:)= —Eil(ﬂg(st) _at)dufiiést)

REINFORCE algorithm. Loop:
1. sample {7} from g (as|s¢) (run the policy)

2. VoJ(0) = 3, (32, Velogma(alsy))(, v'r(st, ap)
3.0« 6+avVyJ(0)

Z Wang (NJU) Policy Gradients July 1st, 2022 24 /58

Continuous action space: Gaussian distribution

torch

torch.nn nn

torch.nn. functional F
torch.distributions Normal

(nn.Module):
__init__(5 0):
super(NormalMLPPolicy, self).__init__()

self.input_layer = nn.Linear(state_dim,)
self.hidden_layer = nn.Linear(D)
self.output_layer = nn.Linear(, action_dim)

Gaussian layer, add stochasticity to actions

the scale of the Gaussian distribution for the action
self.sigma = nn.Parameter(torch.Tensor(action_dim))
self.sigma.data.fill_(math.log(1.0))

forward (0)8
states: (time_horizon x batch_size * state_dim) tensor of states

x = self.input_layer(states)
x = F.relu(x)

x = self.hidden_layer(x)

x = F.relu(x)

the mean of the Gaussian distribution for the action
mu = self.output_layer(x)

Normal(=mu, =self.sigma)

Z Wang (NJU) Policy Gradients July 1st,

Policy gradient with automatic differentiation

VoJ (6 Z (Z Vo logﬂg(atbt)> (Z’Ytr(si,ai))

t=0

@ pretty inefficient to compute these explicitly!

@ How can we compute policy gradients with automatic differentiation?

@ We need a graph such that its gradient is the policy gradient!

@ Just implement “pseudo-loss’ as a @ maximum likelihood estimation

weighted maximum likelihood: N T

1 o
VoJmr(0) ~ i > > Vologmg(ailsi)

i=1t=0

J(9) ~ ZZIOgﬂe ‘lt‘sf QW(Swat)
i=1t=0 LT o
i Imp(0) = — > logmg(ai|si)

cross-entropy loss (discrete)
mean squared error (continuous)

July 1st, 2022 26 /58

Z Wang (NJU) Policy Gradients

Policy gradient with automatic differentiation

@ Pseudocode example (with discrete actions):

@ Maximum likelihood:

Given:
states: (time_horizon * batch_size * state_dim) tensor of states
actions: (time_horizon * batch_size * num_actions) tensor of actions

Build the graph

logits = policy(states)

negative_likelihoods = torch.nn.CrossEntropylLoss(lables=actions, logits=logits)
loss = torch.mean(negative_likelihoods) # The loss is a scalar

gradients = torch.autograd.grad(loss, policy.parameters())

Z Wang (NJU) Policy Gradients

Policy gradient with automatic differentiation

@ Pseudocode example (with discrete actions):

@ Policy gradient:

Given:

states: (time_horizon * batch_size * state_dim) tensor of states

actions: (time_horizon * batch_size * num_actions) tensor of actions

g_values: (time_horizon * batch_size * 1) tensor of estimated state-action values

Build the graph

logits = policy(states)

negative_likelihoods = torch.nn.CrossEntropylLoss(lables=actions, logits=logits)
weighted_negative_likelihoods = negative_likelihoods * q_values # element-wise multiply
loss = torch.mean(weighted_negative_likelihoods) # The loss is a scalar

gradients = torch.autograd.grad(loss, policy.parameters())

t/'=t

N T
1) —
Vol 0) = 7 23 Vologmolails) 5o (s el

Q™ (sh,at)

Z Wang (NJU) Policy Gradients July 1st, 2022 28 /58

Review of the policy gradient

Evaluating the RL objective

o Generate samples

Evaluating the policy gradient

o Log gradient trick
o Generate samples

Understand policy gradient

o Formalization of trial-and-error

Can implement with automatic

differentiation

e need to know what to backpropagate

Z Wang (NJU)

Policy Gradients

T
Z (S, a¢)
t=0

Policy
evaluation

Run the policy
to generate
samples

i Policy
improvement

0« 0+aVy/(0)

July 1st, 2022 29 /58

Table of Contents

© Reducing the variance

Z Wang (NJU) Policy Gradients July 1st, 2022 30/58

What is wrong with the policy gradient?

high variance

e Even worse: what if the two “good” samples have r(7) = 07?

Z Wang (NJU) Policy Gradients July 1st, 2022

31/58

Reducing variance - Causality

1
Vo J(0 N 2 <Z Vg log mo(af|s)) (Z'Y r(st, ag)

e Causality: policy at time ' cannot affect reward at time ¢t when ¢t < ¢/

4
N T /
Vo J (60 NZZVglogm) allst) (th ~tp(51/ at/)>

i=1 t=0 t'=t

Q™ (s}.ay)
“reward-to-go”

Z Wang (NJU) Policy Gradients July 1st, 2022 32/58

Review: Value functions

@ V™, the state-value function for policy 7

V7(s) = Ex[Gt] St = 5]

Z’y Ryiki1|Se = s] Vs e S
k=1

@ (J7, the action-value function for policy 7™

Q" (s,a) = Ex[G|S; = s, Ay = a]

o
Y AV RerialSi =5, A =a
k=1

,Vs € S,a € A(s)

Z Wang (NJU) Policy Gradients July 1st, 2022 33/58

Reducing variance - Baselines

@ But... are we allowed to do that?

@ The key problem is

Ery(r)[Vo 10g ()7 ()] = By () [Vo log mo(r) (r() ~ D)) 722

Z Wang (NJU) Policy Gradients July 1st, 2022 34 /58

Reducing variance - Baselines

a convenient identity

VQJ Z Vg log 7T9 () — b] mo(1)Vglog me(1) = Voma(T)

Ery(ry[Volog me(7)b] = /F@(T)Vg log mo(T)bdT = /VM@(T)de

@ But... are we allowed to do that?

= ng/ﬂg(T) dr =bVel =0

@ Subtracting a baseline is unbiased in expectation!

@ Average reward is not the best baseline, but it's pretty good!

Z Wang (NJU) Policy Gradients July 1st, 2022 35/58

What is the best baseline?

@ The best baseline makes the variance of Vy.J(6) minimal

Vo (0) = Erry(r)[Volog mo(7) (r(1) = 0)] = Eromy () [9(7) ((7) —)]

e Compute the variance: var[r] = E[z?] — E[z]?

var = Eq—~7r9(7') [9(7—)2(7'(7—) - b)Q] - ETNﬂ'B (1) [V.g log 7y (T) (T(T) - b)]2

@ How to derive the best baseline b ?7?7?

Z Wang (NJU Policy Gradients July 1st, 2022 36 /58
g

Analyzing the variance

var = Brry(r) [9(7)* ((7) = 0)%] = Erer,y () [Vo log mo(7) (r(7) = b))

Er g () [Vo log mo (7)r (7))

(baselines are unbiased in expectation)

W Rl () b))
d

= — (E[g(m)*r(7)?] =2E[g(7)r(7)b] + b’E[g(7)?])
dependent of b
= —2E[g(r)*r(7)] + 20E[g(r)?] = 0

Elg(r)*r(7)] This is just expected reward, but weighted
W by gradient magnitudes!

Z Wang (NJU) Policy Gradients July 1st, 2022 37/58

@ The high variance of policy gradient
@ Exploiting causality Q"(st,at)=zr (St @0)
t'=t

o Future doesn’t affect the past

icy
@ Baselines evaluation
. Run the policy
o Unbiased! to generate ﬂ
samples

@ Analyzing variance ol
. . . — olicy
o Can derive optimal baselines

6« 6+aVyJ(6)

Z Wang (NJU) Policy Gradients July 1st, 2022

38/58

Table of Contents

@ Off-policy policy gradient

Z Wang (NJU) Policy Gradients July 1st, 2022 39/58

Review: On-policy vs. off-policy

Target policy 7(als) Behavior policy b(als)
To be evaluated or improved To explore to generate data
Make decisions finally Make decisions in training phase

@ On-policy methods: 7(a|s) = b(als)
e Evaluate or improve the policy that is used to make decisions during
training
e e.g., SARSA
e Off-policy methods: m(a|s) # b(als)
o Evaluate or improve a policy different from that used to generate the
data
e Separate exploration from control
e e.g., Q-learning

Z Wang (NJU) Policy Gradients July 1st, 2022 40/58

Policy gradient is on-policy

0* = arg maxgepa J ()
@ Neural networks change only

JO)=FE, . () [T(T)] a little bit with each gradient
? step
VoJ(0) =K,) [Velogme(T)r(7)] @ On-policy learning can be

extremely inefficient!
This is the trouble!

REINFORCE algorithm. Loop:
1. sample {7%} from mg(a¢|s;) (run the policy)
2. VoJ(0) = >, (3, Vologmo(ai|st)) (X, v'r(st, at))
3.0« 0+avVeJ(0)

can't just skip this!

Z Wang (NJU) Policy Gradients July 1st, 2022 41/58

The off-policy case

@ How to reuse samples that are generated by another behavior policy
T, T+ m?
Vo J(0) = Err,(r)[Vo log ma(T)r(7)]
7é]ETNﬁ'(T) [VG log 7T9()T(T)]

e How to estimate Vy.J () using samples 7 ~ 7(7)?

Z Wang (NJU) Policy Gradients July 1st, 2022 42 /58

Importance sampling

@ A general technique for estimating properties of a particular
distribution p(x), while only having samples generated from a
different distribution g(x) than the distribution of interest p(x)

Z Wang (NJU Policy Gradients July 1st, 2022 43 /58
g /

Importance sampling for estimating policy gradient

@ We need to estimate the gradient Vylog mg(7)r(7) of a distribution
7 ~ my(7), while only having samples generated from a different
distribution 7 ~ 7(7)

VoJ(0) = Erony(r)[Volog mo(7)r(7)]

= ETNTT(T) [???]

Z Wang (NJU) Policy Gradients July 1st, 2022 44 /58

Off-policy learning with importance sampling

@ We need to estimate the gradient Vylog mg(7)r(7) of a distribution
7 ~ mp(7), while only having samples generated from a different
distribution 7 ~ 7(7)

Vo (0) = Erony(r)[Vo log mo(7)r(7)]

mo(7)

=]ETNﬂ'(T) o (7_)

Vo log mo(7)r(7)

7o(T) i p(So)Hfzo We(atlst)p(3t+1’3taat) _ HtT:o Wo(at\st)

(1) plso) [Ii—o 7 (aelse)p(sealse, ar) TIi—g 7(aulse)

Z Wang (NJU) Policy Gradients July 1st, 2022 45 /58

Policy gradient with importance sampling

o 0" = argmaxgegs J(0), J(0) = By, [r(7)]
@ How to estimate the value of some new parameters 6'?

Vo J(0') = Brmony (1) [V log 70 (7)7(7)] = By () {7;1/((:)) Vo log m(T)r(T)}

Ht o o’ at‘st &
=B || B —— or log mos (a|st) Y'r(se, at)
o {(H o)) (3 >
=E. . ZV&' logﬂ'g/(at|8t) H Ty’ a//|91/ Z’y _ T(st/ at
T mo(ay|sy)

t=0 t'=1 =t

Causality: future actions don't affect current weight

Z Wang (NJU) Policy Gradients July 1st, 2022 46 /58

A first-order approximation for importance sampling

t T
VorJ(0) = ooy (o) ng, log 7o/ (az|st) <H 7”’(“’|S’f)> <Z 'yt,_tr(st/,at/)>

t=0 /=1 mo(av|sv) /=t

exponential in T'

@ On-policy policy gradient: (si,ai) ~ o (st,at)

write the objective
Ve (0 ZZW log g (al|sH)Q™ (st, al) a bit differently

zltl

@ Off-policy policy gradient:

N T o
1 ’ 1/’ 2
Vo d(O0) = =>" > MVG, log mg/ (al|sHQ™ (st, al) ignore this part
N o (st,al) v
e myr(sh)
N T . L ro(sh)
L mor (s3) mor (ag]sy) i\ i i ot
== - ———1"Vy log mgr (a]s{) Q™ (s}, ay)
N 22 o) ol

Z Wang (NJU)

Policy Gradients July 1st, 2022 47 /58

Policy gradient in practice

@ Remember that the gradient has high variance
e This isn't the same as supervised learning!
o Gradients will be really noisy!

o Consider using much larger batches

@ Tweaking learning rates is very hard

e Using adaptive step size rules like ADAM
e More policy gradient specific learning rate adjustment methods...

Z Wang (NJU Policy Gradients July 1st, 2022
g

@ Policy gradient is on-policy
@ Can derive off-policy variant
e Use importance sampling
e Exponential scaling in T
o Can ignore state portion (first-order
approximation)

@ Practical considerations: batch size,
learning rates, optimizers

Z Wang (NJU) Policy Gradients

T
Q" (seap) = Zt':tr(sm as)

g:>

Run the policy ﬂ

icy
evaluation

to generate
samples

E Policy
improvement

6« 6+aVyJ(6)

July 1st, 2022

49 /58

Table of Contents

© Partial Observability

Z Wang (NJU) Policy Gradients July 1st, 2022 50/58

Recall: Partially Observable MDP (POMDP)

POMDP: Uncertainty
@ Case 1: Uncertainty about the action outcome

@ Case 2: Uncertainty about the world state due to imperfect (partial)
information

OBSERVATIONS

WORLD + AGENT

ACTIONS

GOAL = Selecting appropriate actions

Z Wang (NJU) Policy Gradients July 1st, 2022 51/58

Recall: Partially Observable MDP (POMDP)

@ A generalization of an MDP

e the agent cannot directly observe the underlying state
e it must maintain a probability distribution over the set of possible
states, based on a set of observations and observation probabilities

e M =(S,AT,R,QO0)
o Q={o01,...,01} is a set of observations
o O(o|s',a) is a set of conditional observation probabilities

Z Wang (NJU) Policy Gradients July 1st, 2022 52 /58

Partial Observability

Vo J (0 Zve log mg(ai,|oi) Z’Y br (Si,t5@it)

t'=t

@ Markov property is not actually used!

@ Can use policy gradient in partially observable MDPs without
modification, empirically

Z Wang (NJU) Policy Gradients July 1st, 2022 53 /58

Examples: Partial Observability

Underlying MDP Observation to Agent

0 0
1 1
2 2
30 30
o o
50 50
))
0 0
80 80

0 Y £ [® 0 Y o

Z Wang (NJU) Policy Gradients

Address partial observability: use the whole history

@ Use recurrent neural network (RNN) as the encoder

@ Embed the summary of past states into the internal memory

Typically, LSTM cells work better here

i

H—'| RNN state

RNN state

Z Wang (NJU)

Policy Gradients

July 1st, 2022

55 /58

Learning objectives of this lecture

@ You should be able to...
Understand and be able to use the vanilla policy gradient method

Be able to use the baseline to reduce the variance of policy gradient
Know the importance sampling technique for off-policy policy gradient
Know the implementation tricks in practice

Z Wang (NJU) Policy Gradients July 1st, 2022 56 /58

References

@ Lecture 5 of CS285 at UC Berkeley, Deep Reinforcement Learning,
Decision Making, and Control
@ http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-5.pdf

@ Classic papers
o Williams (1992). Simple statistical gradient following algorithms for connectionist
reinforcement learning: introduces REINFORCE algorithm.
@ DRL policy gradient papers

@ Y. Duan, et al., Benchmarking Deep Reinforcement Learning for Continuous
Control, ICML, 2016.

@ Z. Wang, et al., Incremental Reinforcement Learning in Continuous Spaces via
Policy Relaxation and Importance Weighting, TNNNLS, 2019.

Z Wang (NJU) Policy Gradients July 1st, 2022 57 /58

http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-5.pdf

THE END

Z Wang (NJU) Policy Gradients July 1st, 2022 58 /58

	Formulation of policy gradient
	Understanding policy gradient
	Reducing the variance
	Off-policy policy gradient
	Partial Observability

