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Contents and Goals

How we can make Q-learning work with deep networks

Use replay buffers, separate target networks

Tricks for improving Q-learning in practice

Double Q-learning, multi-step Q-learning

Continuous Q-learning methods

Goals

Understand how to implement Q-learning so that it can be used with
complex function approximators
Understand how to extend Q-learning to continuous actions
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Review: Fitted Q-iteration (FQI)

Full fitted Q-iteration algorithm. Loop:

1. collect dataset {(si, ai, ri, s′i)} using behavior policy π
loop for K iterations:

2. set yi ← ri + γmaxa′i Qφ(s
′
i, a
′
i)

3. set φ← argminφ
∑

i ||Qφ(si, ai)− yi||2

Online fitted Q-iteration algorithm. Loop:

1. observe one sample (si, ai, ri, s
′
i) using

behavior policy π
2. set yi ← ri + γmaxa′i Qφ(s

′
i, a
′
i)

3. set φ← φ− αdQφ(si,ai)
dφ (Qφ(si, ai)− yi)
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Problem 1: Correlated samples in MDPs

Online fitted Q-iteration algorithm. Loop:

1. take some action ai observe (si, ai, ri, s
′
i)

2. set yi ← ri + γmaxa′i Qφ(s
′
i, a
′
i)

3. set φ← φ− αdQφ(si,ai)
dφ (Qφ(si, ai)− yi)

these samples are correlated!

Fitted Q-iteration is not gradient descent!

φ← φ− α
dQφ(si, ai)

dφ

Qφ(si, ai)−
(
ri + γmax

a′i

Qφ(s
′
i, a
′
i)

)
︸ ︷︷ ︸

no gradient through target value!


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Review: Supervised learning vs. Sequential decision-making

Supervised learning

Samples are independent and
identically distributed (i.i.d.)

Given an input, map an
optimal output

Reinforcement learning

Samples are not i.i.d.,
temporally correlated

Given an initial state, find a
sequence of optimal actions
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Correlated samples in online Q-learning

Online fitted Q-iteration algorithm. Loop:

1. take some action ai, observe (si, ai, ri, s
′
i)

2. set φ← φ− αdQφ(si,ai)
dφ

(
Qφ(si, ai)−

(
ri + γmaxa′i Qφ(s

′
i, a
′
i)
))

sequential states are strongly correlated

target value is always changing
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Correlate samples

Full fitted Q-iteration algorithm. Loop:

1. collect dataset {(si, ai, ri, s′i)} using behavior policy π

loop for K iterations:

2. set yi ← ri + γmaxa′i Qφ(s
′
i, a
′
i)

3. set φ← argminφ
∑

i ||Qφ(si, ai)− yi||2

Online fitted Q-iteration. Loop:

1. take some action ai, observe (si, ai, ri, s
′
i)

2. set yi = ri + γmaxa′i Qφ(s
′
i, a
′
i)

3. set φ← φ− αdQφ(si,ai)
dφ (Qφ(si, ai)− yi)

special case with K = 1,
and one gradient step
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How to reduce the correlation between samples?

Samples in a single episode:

temporally correlated

Samples from different episodes:

i.i.d
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Replay buffers: store the data/transitions

Full fitted Q-iteration algorithm. Loop:

1. collect dataset {(si, ai, ri, s′i)} using behavior policy π

loop for K iterations:

2. set yi ← ri + γmaxa′i Qφ(s
′
i, a
′
i)

3. set φ← argminφ
∑

i ||Qφ(si, ai)− yi||2

any behavior policy π will work!

just load data from a buffer here

still use K = 1 and one gradient
step
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Q-learning with a replay buffer

Loop:

1. sample a batch {(sj , aj , rj , s′j)} from buffer B

2. φ← φ− α
∑
i
dQφ(sj ,aj)

dφ

(
Qφ(sj , aj)−

(
rj + γmaxa′j Qφ(s

′
j , a
′
j)
))

Step 1: samples are no longer correlated if they come from different episodes

Step 2: use multiple samples in the batch for low-variance gradient

Question: Where does the data come from?

Need to periodically feed the replay buffer
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Full Q-learning with a replay buffer

Loop:

1. collect dataset {(si, ai, ri, s′i)} using behavior policy, add it to B
loop for K iterations:

2. sample a batch {(sj , aj , rj , s′j)} from buffer B

3. φ← φ− α
∑
j

dQφ(sj ,aj)

dφ

(
Qφ(sj , aj)−

(
rj + γmaxa′j Qφ(s

′
j , a
′
j)
))

K = 1 is common, though larger K is more efficient
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Problem 2: Moving target in the Bellman equation

Online fitted Q-iteration algorithm. Loop:

1. take some action ai observe (si, ai, ri, s
′
i)

2. set yi ← ri + γmaxa′i Qφ(s
′
i, a
′
i)

3. set φ← φ− αdQφ(si,ai)
dφ (Qφ(si, ai)− yi)

Samples are correlated: solved by a replay buffer

Fitted Q-iteration is not gradient descent!

Target value changes when the Q-network φ is updated!

φ← φ− α
dQφ(si, ai)

dφ

Qφ(si, ai)−
(
ri + γmax

a′i

Qφ(s
′
i, a
′
i)

)
︸ ︷︷ ︸

no gradient through target value!


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The moving target

Full Q-learning with a replay buffer. Loop:

1. collect dataset {(si, ai, ri, s′i)} using behavior policy, add it to B
loop for K iterations:

2. sample a batch {(sj , aj , rj , s′j)} from buffer B

3. φ← φ− α
∑
j

dQφ(sj , aj)

dφ

(
Qφ(sj , aj)−

(
rj + γmax

a′j

Qφ(s
′
j , a
′
j)

))
︸ ︷︷ ︸

one gradient step, moving target

Full fitted Q-iteration algorithm. Loop:

1. collect dataset {(si, ai, ri, s′i)} using behavior policy π
loop for K iterations:

2. set yi ← ri + γmaxa′i Qφ(s
′
i, a
′
i)

3. set φ← argmin
φ

∑
i

||Qφ(si, ai)− yi||2︸ ︷︷ ︸
perfectly well-defined, stable regression
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Solution 2: Target networks

Idea: use another Q-network and fix it in the inner loop

Targets don’t change in the inner loop

Q-learning with replay buffer and target network. Loop:

1. save target network parameters: φ′ ← φ

loop for N iterations:

2. collect dataset {(si, ai, ri, s′i)} using behavior policy, add it to B
loop for K iterations:

3. sample a batch {(sj , aj , rj , s′j)} from buffer B
4. φ← φ− α

∑
j

dQφ(sj ,aj)

dφ

(
Qφ(sj , aj)−

(
rj + γmaxa′j Qφ′(s′j , a

′
j)
))
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“Classic” deep Q-network (DQN)

Q-learning with replay buffer and target network. Loop:

1. save target network parameters: φ′ ← φ

loop for N iterations:

2. collect dataset {(si, ai, ri, s′i)} using behavior policy, add it to B
loop for K iterations:

3. sample a batch {(sj , aj , rj , s′j)} from buffer B
4. φ← φ− α

∑
j

dQφ(sj ,aj)

dφ

(
Qφ(sj , aj)−

(
rj + γmaxa′j Qφ′(s′j , a

′
j)
))

Classic deep Q-learning with K = 1. Loop:

1. take some action ai and observe (si, ai, s
′
i, ri), add it to B

2. sample mini-batch {(sj , aj , rj , s′j)} from B uniformly
3. compute yj = rj + γmaxa′j Qφ′(s′j , a

′
j) using target network Qφ′

4. φ← φ− α
∑
j

dQφ(sj ,aj)
dφ (Qφ(sj , aj)− yj)

5. update φ′: copy φ every N steps

Z Wang (NJU) Deep Q-learning July 3rd, 2022 17 / 58



Alternative target network

Classic deep Q-learning with K = 1. Loop:

1. take some action ai and observe (si, ai, s
′
i, ri), add it to B

2. sample mini-batch {(sj , aj , rj , s′j)} from B uniformly
3. compute yj = rj + γmaxa′j Qφ′(s′j , a

′
j) using target network Qφ′

4. φ← φ− α
∑
j

dQφ(sj ,aj)
dφ (Qφ(sj , aj)− yj)

5. update φ′: copy φ every N steps

Problem: In one inner loop, time lags for different steps are different!
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Alternative target network

Classic deep Q-learning with K = 1. Loop:

1. take some action ai and observe (si, ai, s
′
i, ri), add it to B

2. sample mini-batch {(sj , aj , rj , s′j)} from B uniformly
3. compute yj = rj + γmaxa′j Qφ′(s′j , a

′
j) using target network Qφ′

4. φ← φ− α
∑
j

dQφ(sj ,aj)
dφ (Qφ(sj , aj)− yj)

5. update φ′: copy φ every N steps

Feels weirdly uneven, can we always have the same lag?

Popular alternative updating for the target network:

5. update φ′ : φ′ ← τφ′ + (1− τ)φ

τ = 0.99 works well
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Deep Q-learning and fitted Q-iteration

Deep Q-learning (N = 1,K = 1). Loop:

1. save target network parameters: φ′ ← φ

loop for N iterations:

2. collect M transitions {(si, ai, ri, s′i)} using behavior policy, add them to B
loop for K iterations:

3. sample a batch {(sj , aj , rj , s′j)} from buffer B
4. φ← φ− α

∑
j

dQφ(sj ,aj)

dφ

(
Qφ(sj , aj)−

(
rj + γmaxa′j Qφ′(s′j , a

′
j)
))

Fitted Q-iteration (written similarly as above). Loop:

1. collect M transitions {(si, ai, ri, s′i)} using behavior policy, add them to B
loop for N iterations:

2. save target network parameters: φ′ ← φ
loop for K iterations:

3. sample a batch {(sj , aj , rj , s′j)} from buffer B
4. φ← φ− α

∑
j

dQφ(sj ,aj)

dφ

(
Qφ(sj , aj)−

(
rj + γmaxa′j Qφ′(s′j , a

′
j)
))
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A more general view

Deep Q-learning (N = 1,K = 1). Loop:

1. save target network parameters: φ′ ← φ

loop for N iterations:

2. collect M transitions {(si, ai, ri, s′i)} using behavior policy, add them to B
loop for K iterations:

3. sample a batch {(sj , aj , rj , s′j)} from buffer B
4. φ← φ− α

∑
j

dQφ(sj ,aj)

dφ

(
Qφ(sj , aj)−

(
rj + γmaxa′j Qφ′(s′j , a

′
j)
))
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A more general view

Online fitted Q-iteration: evict immediately, process 1, process 2, and
process 3 run at the same speed

DQN: process 1 and process 3 run at the same speed, process 2 is slow

Fitted Q-iteration: process 3 is in the inner loop of process 2, which is in the
inner loop of process 1
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What’s the problem with continuous actions?

Full fitted Q-iteration algorithm. Loop:

1. collect dataset {(si, ai, ri, s′i)} using behavior policy π
loop for K iterations:

2. set yi ← ri + γmaxa′i Qφ(s
′
i, a
′
i)

3. set φ← argminφ
∑
i ||Qφ(si, ai)− yi||2

Classic deep Q-learning. Loop:

1. take some action ai and observe (si, ai, s
′
i, ri), add it to B

2. sample mini-batch {(sj , aj , rj , s′j)} from B uniformly
3. compute yj = rj + γmaxa′j Qφ′(s′j , a

′
j) using target network Qφ′

4. φ← φ− α
∑
j

dQφ(sj ,aj)
dφ (Qφ(sj , aj)− yj)

5. update φ′: copy φ every N steps
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The target value involves the max operator

Classic deep Q-learning. Loop:

1. take some action ai and observe (si, ai, s
′
i, ri), add it to B

2. sample mini-batch {(sj , aj , rj , s′j)} from B uniformly
3. compute yj = rj + γmaxa′j Qφ′(s′j , a

′
j) using target network Qφ′

4. φ← φ− α
∑
j

dQφ(sj ,aj)
dφ (Qφ(sj , aj)− yj)

5. update φ′: copy φ every N steps

π(a|s) =

1 if a = argmaxaQφ(s, a)

0 otherwise

target value yj = rj + γmaxa′j Qφ′(s′j , a
′
j)

particularly problematic, need another inner loop of optimization
Question: how to perform the optimization, i.e., the max operator?
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Option 1: Stochastic optimization

The action space is typically low-dimensional

What about stochastic optimization?

The simplest solution: uniform sampling

maxaQ(s, a) ≈ max{Q(s, a1), ..., Q(s, an)}
(a1, ..., an) sampled from the some
distribution (e.g., uniform)

+ dead simple
+ efficiently parallelizable
-not very accurate
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More accurate solution: Cross-entropy method (CEM)

Simple iterative stochastic optimization:

1. Draw a sample from a probability distribution

2. Minimize the cross-entropy between this
distribution and a target distribution to produce
a better sample in the next iteration

works OK, for up to
about 40 dimensions

A simple example of maximizing f(x). Loop:

1. Obtain N samples: X ∼ SampleGaussian(µ, σ2;N)

2. Evaluate objective function f(X) at sampled points

3. Sort X by f(X) in descending order: X ← sort(X, f)

4. Update sampling distribution by the top M elites:
µ← mean(X(1 :M)), σ2 ← var(X(1 :M))

Objective:

x∗ = argmaxx f(x)
⇓

a∗ = argmaxaQ(s,a)
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Many stochastic optimization solutions...

Covariance matrix adaptation evolution strategy (CMA-ES)

an evolutionary algorithm for difficult non-linear non-convex black-box
optimization problems in continuous domain

Many more solutions...
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Option 2: Easily maximizable Q-functions

Use function class that is easy to optimize

e.g., the quadratic function

Qφ(s, a) = −
1

2
(a− µφ(s))TPφ(s)(a− µφ(s)) + Vφ(s)

NAF: Normalized Advantage Functions

argmax
a

Qφ(s, a) = µφ(s)

max
a

Qφ(s, a) = Vφ(s)

+ no change to algorithm
+ just as efficient as Q-learning
– loses representational power
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Option 3: learn an approximate maximizer

Lillicrap et al., “Continuous control with deep reinforcement
learning,” ICLR 2016.

Deep deterministic policy gradient (DDPG)
Really approximate deep Q-learning in the continuous action domain

maxaQφ(s, a) = Qφ(s, argmaxaQφ(s, a))

idea: train another network µθ(s) such that

µθ(s) ≈ argmax
a

Qφ(s, a)

Question: how to optimize this deterministic “actor” µθ(s)?
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Q-learning with continuous actions

idea: train another network µθ(s) such that

µθ(s) ≈ argmax
a

Qφ(s, a)

how? just solve θ ← argmaxθ Qφ(s, µθ(s))

dQφ(s, µθ(s))

dθ
=

dQφ
da
· da
dθ

=
dQφ
dµθ(s)

· dµθ(s)
dθ

new target

yj = rj + γQφ′(s′j , µθ(s
′
j)) ≈ rj + γQφ′(s′j , argmax

a′j

Qφ′(s′j , a
′
j))
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DDPG network architecture

Backpropagate the critic:

∇φ =
dQφ(s, a)

dφ
(Qφ(s, a)− y)

Backpropagate the actor:

∇θ =
dQφ

dµθ(s)
· dµθ(s)

dθ
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Deep deterministic policy gradient (DDPG)

Loop:

1. take some action ai and observe (si, ai, s
′
i, ri), add it to B

2. sample mini-batch {(sj , aj , rj , s′j)} from B uniformly

3. compute yj = rj + γQφ′(s′j , µθ′(s
′
j)) by target networks Qφ′ and µθ′

4. φ← φ− α
∑
j

dQφ(sj ,aj)
dφ (Qφ(sj , aj)− yj)

5. θ ← θ + β
∑
j

dQφ
dµθ(sj)

dµθ(sj)
dθ

6. update φ′, θ′: φ′ ← τφ′ + (1− τ)φ, θ′ ← τθ′ + (1− τ)θ

The behavior policy π:

The target greedy policy is π∗(s) = µθ(s), actually
Add some exploration noise to the target greedy policy,
just like ε-greedy in tabular Q-learning

π(a|s) ∼ N (µθ(s), σ
2)
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Review: Actor-critic algorithms

Loop:

1. sample {si, ai, ri, s′i} from πθ(a|s) (run it on the robot)

2. policy evaluation: fit V̂ πφ (s) to sampled reward sums

3. evaluate Âπ(si, ai) = ri + γV̂ πφ (s′i)− V̂ πφ (si)

4. policy improvement: ∇θJ(θ) ≈
∑
i∇θ log πθ(ai|si)Âπ(si, ai)

5. θ ← θ + α∇θJ(θ)
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DDPG vs. Actor-critic

DDPG. Loop:
1. take some action ai and observe (si, ai, s

′
i, ri), add it to B

2. sample mini-batch {(sj , aj , rj , s′j)} from B uniformly

3. compute yj = rj + γQφ′(s′j , µθ′(s
′
j)) by target networks Qφ′ and µθ′

4. φ← φ− α
∑
j

dQφ(sj ,aj)

dφ
(Qφ(sj , aj)− yj)

5. θ ← θ + β
∑
j

dQφ
dµθ(sj)

dµθ(sj)

dθ

6. update φ′, θ′: φ′ ← τφ′ + (1− τ)φ, θ′ ← τθ′ + (1− τ)θ

Actor-critic. Loop:
1. sample {si, ai, ri, s′i} from πθ(a|s) (run it on the robot)
2. policy evaluation: fit V̂ πφ (s) to sampled reward sums

3. evaluate Âπ(si, ai) = ri + γV̂ πφ (s′i)− V̂ πφ (si)

4. policy improvement: ∇θJ(θ) ≈
∑
i∇θ log πθ(ai|si)Â

π(si, ai)
5. θ ← θ + α∇θJ(θ)
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Review: Q-learning vs. SARSA

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a

Q(St+1, a)−Q(St, At)]

Q-learning approximates the optimal action-value function for an
optimal policy, Q ≈ Q∗ = Qπ∗

The target policy is greedy w.r.t Q, π(a|s) = argmaxaQ(s, a)
The behavior policy can be others, e.g., b(a|s) = ε-greedy

Q(St, At)← Q(St, At) + α[Rt+1 + γQ(St+1, At+1)−Q(St, At)]

SARSA approximates the action-value function for the behavior
policy, Q ≈ Qπ = Qb

The target and the behavior policy are the same, e.g.,
π(a|s) = b(a|s) = ε-greedy
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DDPG vs. Actor-critic

DDPG

The actor: approximate the optimal policy
a∗µθ(s) = argmaxaQφ(s, a)
The critic: approximate the optimal action-value function Q∗φ
Off-policy, more sample efficient

Actor-critic

The actor: approximate the current policy a ∼ πθ(a|s)
The critic: approximate the state-value function V πφ for given policy π
On-policy, at least converge to a local optimum
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Overestimation in Q-learning

target value yj = rj + γmax
a′j

Qφ′(s
′
j , a
′
j)︸ ︷︷ ︸

this is the problem

Imagine we have two random variables: x1 and x2

E[max(x1, x2)] ≥ max(E[x1],E[x2])

Qφ′(s′, a′) is not perfect – it looks “noisy”

hence maxa′ Qφ′(s′, a′) overestimates the next value!

note that maxa′ Qφ′(s
′, a′) = Qφ′(s

′, argmaxa′ Qφ′(s
′, a′))

action selected according to Qφ′

value also comes from Qφ′
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Double Q-learning

E[max(x1, x2)] ≥ max(E[x1],E[x2])

note that maxa′ Qφ′(s′, a′) = Qφ′(s′, argmaxa′ Qφ′(s′, a′))

action selected according to Qφ′

value also comes from Qφ′

if the noise in the two parts is decorrelated , the problem goes away!

IDEA: don’t use the same network to choose the action and evaluate value!

“double” Q-learning: use two networks

QφA(s, a)← r + γQφB (s
′, argmax

a′
QφA(s

′, a′))

QφB (s, a)← r + γQφA(s
′, argmax

a′
QφB (s

′, a′))

if the two Q-networks, QφA and QφB , are noisy in different ways, there
is no problem

Z Wang (NJU) Deep Q-learning July 3rd, 2022 41 / 58



Double Q-learning in practice

Where to get two Q-functions?

just use the current and target networks!

standard Q-learning: y = r + γQφ′(s
′, argmaxa′ Qφ′(s

′, a′))

double Q-learning: y = r + γQφ′(s
′, argmaxa′ Qφ(s

′, a′))

just use current network (not target network) to evaluate action

still use target network to evaluate value
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n-step bootstrapping: Combine MC and one-step TD

Neither MC or one-step TD is always the best, we generalize both
methods so that one can shift from one to the other smoothly as
needed to meet the demands of a particular task

One-step TD: In many applications, one wants to be able to update
the action very fast to take into account anything that has changed

However, bootstrapping works best if it is over a length of time in
which a significant and recognizable state change has occurred

n = 1 n-step TD n =∞

TD(0) ↔ MC
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n-step TD prediction

Perform an update based on an intermediate number of rewards,
more than one, but less than all of them until termination
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Recall MC and TD(0) updates

In MC updates, the target is the complete return

Gt = Rt+1 + γRt+2 + ...+ γT−t+1RT

V (St)← V (St) + α[Gt − V (St)]

= V (St) + α[Rt+1 + γRt+2 + ...+ γT−t+1RT − V (St)]

In TD(0) updates, the target is the one-step return

Gt:t+1 = Rt+1 + γV (St+1)

V (St)← V (St) + α[Gt:t+1 − V (St)]

= V (St) + α[Rt+1 + γV (St+1)− V (St)]
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n-step TD update rule

For n-step TD, set the target as the n-step return

Gt:t+n = Rt+1 + γRt+2 + ...+ γn−1Rt+n + γnV (St+n)

All n-step returns can be considered approximations to the complete
return, truncated after n steps and then corrected for the remaining
missing terms by V (St+n)

V (St)← V (St) + α[Gt:t+n − V (St)]

= V (St) + α[Rt+1 + γRt+2 + ...+ γn−1Rt+n + γnV (St+n)− V (St)]
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Deep Q-learning with n-step bootstrapping

Q-learning target: yj,t = rj,t + γmaxa′j,t+1
Qφ′(s

′
j,t+1, a

′
j,t+1)

these are the only values that matter if Qφ′ is bad!
these values are important if Qφ′ is good

Construct multi-step targets, N -step return estimator:

yj,t =

t+N−1∑
t′=t

γt
′−trj,t′ + γN max

a′j,t+N

Qφ′(s
′
j,t+N , a

′
j,t+N )
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Simple practical tips for Q-learning

Q-learning takes some care to stabilize

Test on easy, reliable tasks fist, make sure your implementation is
correct

Large replay buffers help improve stability

Looks more like fitted Q-iteration

It tasks time, be patient - might be no better than random for a while

Start with high exploration and gradually move to high exploitation
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Advanced tips for Q-learning

Bellman error gradients can be big; clip gradients or use Huber loss

L(x) =

 x2/2 if |x| ≤ δ

δ|x| − δ2/2 otherwise

Double Q-learning helps a lot in practice, simple and no downsides

N -step returns also help a lot, but have some downsides

Schedule exploration (high to low) and learning rates (high to low)

Adam optimizer can help too

Run multiple random seeds, it’s very inconsistent between runs
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Q-learning with convolutional networks

Mnih et al., “Human-level control through deep reinforcement learning,” 2013.

Use replay buffer and target network

One-step backup, one gradient step

Can be improved a lot with double Q-learning (and other tricks)
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Q-learning on a real robot

Gu et al., “Robot manupulation with deep reinforcement learning and ...,” 2017.

Continuous actions with NAF (quadratic in actions)

Use replay buffer and target network

One-step backup, four gradient steps per simulator step for efficiency

Parallelized across multiple robots
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Review

Q-learning with deep neural networks

Replay buffers
Target networks

Generalized fitted Q-iteration

Deep deterministic policy network

Deep Q-learning for continuous
action space
Another network for approximating
optimal policy
Off-policy

Extensions

Double Q-learning
Multi-step Q-learning
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Learning objectives of this lecture

You should be able to...

Use deep neural networks to approximate Q-functions, be able to
implement deep Q-learning with replay buffers and target networks
Use deep deterministic policy gradient for continuous actions

Know double Q-learning for addressing the overestimation problem
Know deep Q-learning with n-step returns
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Deep Q-learning suggested readings

Lecture 8 of CS285 at UC Berkeley, Deep Reinforcement Learning,
Decision Making, and Control

http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-8.pdf

DRL Q-learning papers
Mnih et al. (2013). Human level control through deep reinforcement learning:
Q-learning with convolutional networks for playing Atari.
Van Hasselt, Guez , Silver. (2015). Deep reinforcement learning with double
Q-learning: a very effective trick to improve performance of deep Q-learning.
Lillicrap et al. (2016). Continuous control with deep reinforcement learning:
continuous Q-learning with actor network for approximate maximization.
Wang, Schaul , Hessel, van Hasselt, Lanctot , de Freitas (2016). Dueling network
architectures for deep reinforcement learning: separates value and advantage
estimation in Q-function.
Z. Ren, et al., Self-Paced Prioritized Curriculum Learning With Coverage Penalty
in Deep Reinforcement Learning, TNNLS, 2018.
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Volunteer Homework 4

Study the DDPG algorithm in detail

Implement the DDPG algorithm on problems 1 & 2

Problem 1: the point maze navigation, continuous state-action space
(s, a ∈ R2, s ∈ [−0.5, 0.5]2, a ∈ [−0.1, 0.1]2)
Problem 2: the MuJoCo HalfCheetah, make the robot run forward
Compare DDPG with policy gradient and actor-critic algorithms

Write a report introducing the algorithms and your experimentation

Explanations, steps, evaluation results, visualizations...
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THE END
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