Z Wang (NJU)

Lecture 9: Deep Q-learning

Zhi Wang

School of Management and Engineering
Nanjing University

July 3rd, 2022

Deep Q-learning

July 3rd, 2022

1/58

Contents and Goals

@ How we can make Q-learning work with deep networks
o Use replay buffers, separate target networks

@ Tricks for improving Q-learning in practice
e Double Q-learning, multi-step Q-learning

Continuous Q-learning methods

o Goals

e Understand how to implement Q-learning so that it can be used with
complex function approximators
e Understand how to extend Q-learning to continuous actions

Z Wang (NJU) Deep Q-learning July 3rd, 2022 2/58

Table of Contents

0 Q-learning with deep neural networks
@ Problem 1: Correlated samples — Solution 1: Replay buffers

Z Wang (NJU) Deep Q-learning July 3rd, 2022 3/58

Review: Fitted Q-iteration (FQI)

o Full fitted Q-iteration algorithm. Loop:

1. collect dataset {(s;, a;, s, si)} using behavior policy ™
loop for K iterations:

2. set y; < 1 +ymaxy Qp(s), a;)
3. set ¢ < argming Y, ||Qp(si, ai) — yil?

Q(s,a) < r(s,) +y maxQy(s',a’)

@ Online fitted Q-iteration algorithm. Loop: -
olicy
1. observe one sample (s;, a;,r;, s;) using f
. . Run the policy
behaVlOr pOlle ™ to generate ﬂ
samples

set y; < 7; +ymaxy Qy(s]; a;)

2.
P, Qi % by
3. set ¢F¢—Q%W(Q¢(Si,ai)—yi)

a « argmax Qg (s, @)
a

Z Wang (NJU) Deep Q-learning July 3rd, 2022 4/58

Problem 1: Correlated samples in MDPs

@ Online fitted Q-iteration algorithm. Loop:

1. take some action a; observe (s;,a;,7;,s%)
2. set y; & 1, + 7 maxy; Qols)a)

d 84,4
3. set ¢+ ¢ — a%(@b(si,ai) — i)

@ these samples are correlated!

o Fitted Q-iteration is not gradient descent!

dQe(si,a;)

66— a—ts

Qp(sisai) — (Tz‘ + v max Q¢(527@§)>
a;

~
no gradient through target value!

Z Wang (NJU) Deep Q-learning July 3rd, 2022 5/58

Review: Supervised learning vs. Se ial decision-making

Supervised learning

standard

@ Samples are independent and e
identically distributed (i.i.d.)

@ Given an input, map an
optimal output

features mid-level features classifier
e.g. HOG) (e.g. DPM) (e.g.SVM] J
. Felzenszwalb 08 L=

deep
learning

Reinforcement learning

@ Samples are not i.i.d., 00
temporally correlated g8

@ Given an initial state, find a
sequence of optimal actions

Z Wang (NJU) Deep Q-learning July 3rd, 2022 6/58

Correlated samples in online Q-learning

@ Online fitted Q-iteration algorithm. Loop:
1. take some action a;, observe (s;,a;, 74, 5})

2. set ¢ qb—a%f;’ai) (Q¢(5i7ai> (+ymaxg ’Q¢>(Si> Q))

@ sequential states are strongly correlated

@ target value is always changing

0}
,@‘ @
rr

S2
P(St+1|5t ar) \f P(St+1lst. ar)

7(So, @o) r(51,a1)

Z Wang (NJU) Deep Q-learning July 3rd, 2022 7/58

Correlate samples

o Full fitted Q-iteration algorithm. Loop:

1. collect dataset {(s;,a;,7;.s;)} using behavior policy 7
loop for K iterations:
2. set y; < 1 +ymaxy Qp(s), a;)
3. set ¢ < argmin, > Qe(si, ai) — vil|?

@ Online fitted Q-iteration. Loop:
1. take some action a;, observe (s;,a;,7i,5;) | special case with K = 1,
2. set y; = 1; +ymaxy, Qq (s}, a;) and one gradient step
3. set ¢+ ¢ — Q%W(sti,ai) — ;)

Z Wang (NJU) Deep Q-learning July 3rd, 2022 8/58

How to reduce the correlation between samples?

. . . batch
@ Samples in a single episode: ° e
s ([J
e temporally correlated

@ Samples from different episodes:

o iid S s,éE

Z Wang (NJU) Deep Q-learning July 3rd, 2022 9/58

Replay buffers: store the data/transitions

o Full fitted Q-iteration algorithm. Loop:
1. collect dataset {(s;,a;,7;.s,)} using behavior policy 7
loop for K iterations:
2. set y; < 1 +ymaxy Qu(s), a;)
3. set ¢ < argmin, > Qg(si, ai) — vil|?

@ any behavior policy 7 will work!

dataset of transitions

@ just load data from a buffer here

@ still use K =1 and one gradient ie I o
step \ Fitted Q-iteration

Z Wang (NJU) Deep Q-learning July 3rd, 2022 10 /58

Q-learning with a replay buffer

e Loop:

1. sample a batch {(s;,a;,7;,s})} from buffer B

2. 64 6— a2 (Qyssaz) — 1y +ymaxa, Quls),a))))

@ Step 1: samples are no longer correlated if they come from different episodes

@ Step 2: use multiple samples in the batch for low-variance gradient

@ Question: Where does the data come from?
o Need to periodically feed the replay buffer

(s,a,8',r) —
dataset of transitions

(“replay buffer”)
\ off-policy
\ f \ Q-learning
® \ ®
L]

w(als) (e.g., e-greedy)

Z Wang (NJU) Deep Q-learning July 3rd, 2022 11/58

Full Q-learning with a replay buffer

o Loop:

1. collect dataset {(s;, a;, 7, s;)} using behavior policy, add it to B
loop for K iterations:

2. sample a batch {(s;,a;,r;,s;)} from buffer B

3.6« ¢ —a¥, 12 (Qu(s;,a5) — (1 +ymaxy; Quls),al)))

e K =1 is common, though larger K is more efficient

(s,a7s’,‘r) e ety BT
dataset of transitions

N off-policy

f f (“replay buffer”))
o \ \‘ Q-learning

w(als) (e.g., e-greedy)

Z Wang (NJU) Deep Q-learning July 3rd, 2022

Table of Contents

0 Q-learning with deep neural networks

@ Problem 2: Moving target — Solution 2: Target networks

Z Wang (NJU Deep Q-learning July 3rd, 2022 13 /58
g

Problem 2: Moving target in the Bellman equation

@ Online fitted Q-iteration algorithm. Loop:
1. take some action a; observe (s;, a;, 7, s})
2. set y; + 1 +ymaxy Qu(si,a;)
d i,
3. set ¢+ ¢ — a%(@b(shai) -)

@ Samples are correlated: solved by a replay buffer

o Fitted Q-iteration is not gradient descent!
e Target value changes when the Q-network ¢ is updated!

dQg(s4, a4)

P —a o

Qo(sisa:) — <T‘i + vy max Qg (s;, a;:))
a;

no gradient through target value!

Z Wang (NJU) Deep Q-learning July 3rd, 2022 14 /58

The moving target

o Full Q-learning with a replay buffer. Loop:

1. collect dataset {(s;, a;, s, s;)} using behavior policy, add it to B
loop for K iterations:

2. sample a batch {(s;,a;,r;,s;)} from buffer B

= — az dQs(s;,a5) sj,a] <Q¢(S]"aj) — (T'j +’}/II(11%XQ(’/,(S‘/7'.,(L;))>

one gradient step, moving target

o Full fitted Q-iteration algorithm. Loop:
1. collect dataset {(s;, a;, s, s;)} using behavior policy 7
loop for K iterations:
2. set y; 1 +ymax, Qq(si,a;)

3. set ¢<—argminZ||Q¢(si,ai)—yi||2
4 i

perfectly well-defined, stable regression

Z Wang (NJU) Deep Q-learning July 3rd, 2022 15 /58

Solution 2: Target networks

o ldea: use another Q-network and fix it in the inner loop
e Targets don't change in the inner loop

Q-learning with replay buffer and target network. Loop:
1. save target network parameters: ¢’ < ¢
loop for N iterations:

2. collect dataset {(s;,a;,7:,5s;)} using behavior policy, add it to B
loop for K iterations:

3. sample a batch {(s;, a;,7;,s5)} from buffer B
d S.,a4 / /
4 p—p—a); % <Q¢(Sj,aj) - (T’_y' + 7y max, Qé’(sjaaj)))

Z Wang (NJU) Deep Q-learning July 3rd, 2022 16 /58

“Classic” deep Q-network (DQN)

Q-learning with replay buffer and target network. Loop:

1. save target network parameters: ¢’ + ¢
loop for N iterations:

2. collect dataset {(s;,a;,7:,5s;)} using behavior policy, add it to B
loop for K iterations:

3. sample a batch {(s;, a;,r;,s5)} from buffer B
d EFN / /
4 ¢« ¢—a¥y, W@ (Qu(ss,a5) - (1) +ymaxy, Qu(s).a))))

@ Classic deep Q-learning with K = 1. Loop:
1. take some action a; and observe (s;,a;, s;,7;), add it to B
sample mini-batch {(s;,a;,7;,s})} from B uniformly
compute y; = 7; + 7 max, Q (8}, a’;) using target network ()y
d Paj
¢ ¢—aY,; 19 (Qy(s;,a5) — y))
update ¢’: copy ¢ every N steps

o> DN

Z Wang (NJU) Deep Q-learning July 3rd, 2022 17 /58

Alternative target network

o Classic deep Q-learning with K = 1. Loop:
1. take some action a; and observe (s;,a;, s;,7;), add it to B
. sample mini-batch {(s;,a;,7;,s})} from B uniformly

- compute y; = r;j + 7 maxg, Q¢/(sj, aJ) using target network Qg

2

3

d Sj,a

4 ¢ ¢ —a Y T (Qu(sga;) —)
5. update ¢': copy ¢ every N steps

@ Problem: In one inner loop, time lags for different steps are different!
¢

Intuition: maximal lag
get target from here ’ no lag here

(s,a,s',7) & (s,as,r) ¢ (s,as.,r) ¢ (s,as,r) ¢ (s,as,r) ¢

Z Wang (NJU) Deep Q-learning July 3rd, 2022

Alternative target network

o Classic deep Q-learning with K = 1. Loop:

1. take some action a; and observe (s;,a;, s;,7;), add it to B
sample mini-batch {(s;,a;,7;,5%)} from B uniformly

compute y; = 7; + 7 maxq; Qg (8}, a’;) using target network Qy
d i a;
¢ & —ay, LA (Qy(s, ;) — yy)

update ¢’: copy ¢ every N steps

o~ N

o Feels weirdly uneven, can we always have the same lag?

@ Popular alternative updating for the target network:
5. update ¢’ : ¢/ <~ 7¢' + (1 —7)¢

o 7 = 0.99 works well

Z Wang (NJU) Deep Q-learning July 3rd, 2022 19 /58

Deep Q-learning and fitted Q-iteration

Deep Q-learning (N =1, K =1). Loop:

1. save target network parameters: ¢’ < ¢

loop for N iterations:
2. collect M transitions {(s;, ai,ri,s;)} using behavior policy, add them to B
loop for K iterations:
3. sample a batch {(s;,a;,r;,s;)} from buffer B

4 ¢ ¢—aXy, Begre) (Q¢(5j,aj) - (7’;' + ymaxgs Q¢’(397’13)))

Fitted Q-iteration (written similarly as above). Loop:
1. collect M transitions {(s;, ai, 7, s;)} using behavior policy, add them to B
loop for N iterations:

2. save target network parameters: ¢’ + ¢
loop for K iterations:

3. sample a batch {(s;,a;,r;,s;)} from buffer B
4 ¢4 b —a X, 2 (Qy(ssa;) — (v +
¢\5j5,Aj J 7y max, ’QW('R])

Z Wang (NJU) Deep Q-learning July 3rd, 2022 20/58

A more general view

Deep Q-learning (N =1, K =1). Loop:
1. save target network parameters: ¢’ < ¢
loop for N iterations:

2. collect M transitions {(s;, ai,ri,s;)} using behavior policy, add them to B
loop for K iterations:

3. sample a batch {(s;,a;,r;,s;)} from buffer B
d Si,a / !
4 ¢ ¢ -, 22 (Qu(ss,a5) - (ry +ymaxy Qu(sh,a))))

process 2

current
target update

parameters

s,a,s',r) ¢ o

) (dataset of transitions
(“replay buffer”)
.f I .'\:\o -

w(als) (e.g., e-greedy)

target

process 1: data collection
parameters

evict old data

Z Wang (NJU) Deep Q-learning July 3rd, 2022 21/58

A more general view

process 2

current
target update

parameters

target
parameters

s,a,s’,r) ¢ ¢

) (dataset of transitions
(“replay buffer”)
f I .\:\o -
m(als)

(e.g., e-greedy)

process 1: data collection

evict old data

@ Online fitted Q-iteration: evict immediately, process 1, process 2, and
process 3 run at the same speed

@ DQN: process 1 and process 3 run at the same speed, process 2 is slow

@ Fitted Q-iteration: process 3 is in the inner loop of process 2, which is in the
inner loop of process 1

Z Wang (NJU) Deep Q-learning July 3rd, 2022 22 /58

Table of Contents

© Deep deterministic policy gradient (DDPG)
@ Continuous action space

Z Wang (NJU) Deep Q-learning July 3rd, 2022 23 /58

What's the problem with continuous actions?

o Full fitted Q-iteration algorithm. Loop:
1.

collect dataset {(s;,a;,7;,5;)} using behavior policy
loop for K iterations:

2. set y; + 1 +ymaxy Qy(s], a;)
3. set ¢+ argming Y, ||Qq(si,a;) — yil|?

o N

o Classic deep Q-learning. Loop:
1.

take some action a; and observe (s;,a;, s;,r;), add it to B
sample mini-batch {(s;,a;,7;,5%)} from B uniformly

compute y; = 7; + ymax, Qg (s}, a’;) using target network Qg

d ,a;
¢ ¢ —ay, W) (Qy(s;,a;) — yy)
update ¢': copy ¢ every N steps

Z Wang (NJU) Deep Q-learning July 3rd, 2022

24 /58

The target value involves the max operator

@ Classic deep Q-learning. Loop:
1. take some action a; and observe (s;,a;, s}, 7;), add it to B
sample mini-batch {(s;, a;,7;,5})} from B uniformly
compute y; = 7 + ymax, Qg (s, al;) using target network Qg
d)
O ¢ — 042 M (Qq(s5,a5) — y;)

update ¢': copy ¢ every N steps

o> N

(als) 1 if a=argmax, Qy(s,a)
m(als) =
otherwise

@ target value y; =r; + ymaxg: QMSQ, a;)

e particularly problematic, need another inner loop of optimization
e Question: how to perform the optimization, i.e., the max operator?

Z Wang (NJU) Deep Q-learning July 3rd, 2022 25 /58

Option 1: Stochastic optimization

@ The action space is typically low-dimensional
e What about stochastic optimization?

The simplest solution: uniform sampling

@ max, Q(s,a) ® max{Q(s,ay),...,Q(s,an)}

@ (ay,...,a,) sampled from the some
distribution (e.g., uniform)

+ dead simple
+ efficiently parallelizable
-not very accurate

Z Wang (NJU) Deep Q-learning July 3rd, 2022 26 /58

More accurate solution: Cross-entropy method (CEM)

Simple iterative stochastic optimization:

1. Draw a sample from a probability distribution
works OK, for up to

2. Minimize the cross-entropy between this about 40 dimensions

distribution and a target distribution to produce
a better sample in the next iteration

A simple example of maximizing f(x). Loop:

1. Obtain N samples: X ~ SampleGaussian(u, o%; N) Objective:

2. Evaluate objective function f(X) at sampled points 2* = argmax,, f(x)

3. Sort X by f(X) in descending order: X < sort(X, f) 4
o . a” = argmax, (s, a)

4. Update sampling distribution by the top M elites:

p < mean(X(1: M)), o2+« var(X(1:M))

Z Wang (NJU) Deep Q-learning July 3rd, 2022 27 /58

Many stochastic optimization solutions...

e Covariance matrix adaptation evolution strategy (CMA-ES)

e an evolutionary algorithm for difficult non-linear non-convex black-box
optimization problems in continuous domain

@ Many more solutions...

Z Wang (NJU) Deep Q-learning July 3rd, 2022 28 /58

Option 2: Easily maximizable Q-functions

@ Use function class that is easy to optimize
e e.g., the quadratic function

Qo(s,0) = =5 (a = 1g(s) " Po(s)(a = s (5)) + Vi (s) o Ny v

NAF Architecture.

@ NAF: Normalized Advantage Functions

+ no change to algorithm
+ just as efficient as Q-learning
— loses representational power

argmax Qg (s, a) = pe(s)

max Qe(s,a) = Vy(s)

Z Wang (NJU) Deep Q-learning July 3rd, 2022 29 /58

Table of Contents

© Deep deterministic policy gradient (DDPG)

@ Approximate the optimal policy using another network

Z Wang (NJU) Deep Q-learning July 3rd, 2022 30/58

Option 3: learn an approximate maximizer

o Lillicrap et al., “Continuous control with deep reinforcement
learning,” ICLR 2016.

o Deep deterministic policy gradient (DDPG)
o Really approximate deep Q-learning in the continuous action domain

e max, Q4(s,a) = Qu(s,argmax, Qu(s,a))

@ idea: train another network fi(s) such that
po(s) = arg max Qy(s, a)
a

@ Question: how to optimize this deterministic “actor” pg(s)?

Z Wang (NJU) Deep Q-learning July 3rd, 2022 31/58

Q-learning with continuous actions

@ idea: train another network pg(s) such that
po(s) ~ argmax Qy (s, a)
a

@ how? just solve 0 « argmaxy Q4(s, 1o(s))

dQy(s,pe(s)) dQy da dQy due(s)

dé da do due(s) dé

@ new target

Yi =1 +7Qu (85, 110(s])) = 1j + 1Qg (5, arg max Qy (57, a3))

J

Z Wang (NJU) Deep Q-learning July 3rd, 2022 32/58

DDPG network architecture

Backpropagate using Bellman
error as the loss function

@ Backpropagate the critic:

Ve = C@(Si(;’@ (Qo(s,0) —y)

—

Qp (s, 1a(s))
() >

@ Backpropagate the actor:

_dQy dpe(s)
Vo= Tuals) o

Backpropagate using —Q
as the loss function

Z Wang (NJU) Deep Q-learning July 3rd, 2022

Deep deterministic policy gradient (DDPG)

o Loop:

1. take some action a; and observe (s;,a;, s}, 7;), add it to B

2. sample mini-batch {(s;, a;,7;,s})} from B uniformly

3. compute y; =1, +vQy (s}, 110/ (s;)) by target networks Qg and pig
d Sj,a

4o g p—aY, Qe (Qy(s;, a5) — ;)
dQg dpa(s;)

5.0+ 0+85; due(jj) T

6. update ¢',0": ¢ 1+ (1 —7)¢, ¢ < 70"+ (1 —7)0

@ The behavior policy m:

o The target greedy policy is 7*(s) = ug(s), actually
e Add some exploration noise to the target greedy policy,
just like e-greedy in tabular Q-learning

m(als) ~ N (uo(s), %)

Z Wang (NJU) Deep Q-learning July 3rd, 2022 34 /58

Review: Actor-critic algorithms

@ Loop:
1. sample {s;,a;,7;,s;} from mg(als) (run it on the robot)
2. policy evaluation: fit Vg(s) to sampled reward sums
3. evaluate A™(s;,a;) =r; + *yf/(;’(s;) - V(;'(sz)
4. policy improvement: VyJ(6) = >, Vg log T (as|s;)A™ (s, a;)
5. 0+ 0+aVyJ(9)

fit UV

Policy
‘ evaluation

Run the policy
to generate
samples

‘ Policy
improvement

0«0 +aVyj(0)

Z Wang (NJU) Deep Q-learning July 3rd, 2022 35/58

DDPG vs. Actor-critic

e DDPG. Loop:

1. take some action a; and observe (s;,ai, s, r;), add it to B

. sample mini-batch {(s;, a;,r;,s})} from B uniformly
. compute y; = r; +vQu (8}, er (s5)) by target networks Qg and pgs

2
3
4 ¢ ¢—ay, Qe (Qy(s;,a5) — yy)
5
6

00+ By, d% dpso(sy)

J dug(sy) de

. update ¢',0": ¢ +7¢' + (1 —7)p, 0 + 70" + (1 —7)0

@ Actor-critic. Loop:

1. sample {s;, ai,7i,s;} from mo(als) (run it on the robot)
policy evaluation: fit V[(s) to sampled reward sums
evaluate A™(si, a;) = ri + YV (s1) — VI (s4)
policy improvement: VyJ(0) = 3. Vqlogmg (ai|si)1217r (siya:)
0« 0+ aVeJ(0)

o W

Z Wang (NJU) Deep Q-learning July 3rd, 2022

Review: Q-learning vs. SARSA

Q(St, Ap) = Q(St; Ap) + a[Rep1 +ymax Q(Sit1, @) — Q(Sh, Ar)]

@ Q-learning approximates the optimal action-value function for an
optimal policy, @ ~ Q. = Q.
o The target policy is greedy w.r.t Q, m(als) = argmax, Q(s,a)
o The behavior policy can be others, e.g., b(a|s) = e-greedy

Q(St, Ap) « Q(Si, Ap) + a[Rip1 + vQ(Si41, A1) — Q(St, Ay)]

@ SARSA approximates the action-value function for the behavior
policy, @ = Qr = Qs
o The target and the behavior policy are the same, e.g.,
m(als) = b(als) = e-greedy

Z Wang (NJU) Deep Q-learning July 3rd, 2022 37/58

DDPG vs. Actor-critic

e DDPG
o The actor: approximate the optimal policy
a*pe(s) = argmax, Qu(s,a)
e The critic: approximate the optimal action-value function Q;
e Off-policy, more sample efficient

@ Actor-critic
e The actor: approximate the current policy a ~ mg(a|s)
o The critic: approximate the state-value function V[for given policy 7
e On-policy, at least converge to a local optimum

Z Wang (NJU) Deep Q-learning July 3rd, 2022 38/58

Table of Contents

e Extensions
@ Double Q-learning

Z Wang (NJU) Deep Q-learning July 3rd, 2022 39/58

Overestimation in Q-learning

o ro
o target value y; =1, + ’}/HZE}Xde,(S]” a;)
J
this is the problem
@ Imagine we have two random variables: x; and xo

E[max(z1, x2)] > max(E[z1], E[z2])

o Qg (s',d’) is not perfect — it looks “noisy”
o hence max, Q4 (s’,a’) overestimates the next value!
@ note that max, Qu (s',a") = Qu(s',argmax, Qu (s, a’))

e action selected according to Q4
o value also comes from Q4

Z Wang (NJU) Deep Q-learning July 3rd, 2022

Double Q-learning

o E[max(x1,x2)] > max(E[z;], E[zs])

@ note that max, Qg (s',a’) = Qg (s',argmax,, Qu (s, a"))
e action selected according to @4
o value also comes from @4

e if the noise in the two parts is decorrelated , the problem goes away!
@ IDEA: don’t use the same network to choose the action and evaluate value!
@ “double” Q-learning: use two networks
Qoa(3:0) = 7 +7Qup (5 arg max Q, (5.)

Q¢>B (Sa a) —r+ 7Q¢A (sl’ arg rlnax Q¢B (slv al))

o if the two Q-networks, ()4, and Q4,,, are noisy in different ways, there
is no problem

Z Wang (NJU) Deep Q-learning July 3rd, 2022 41/58

Double Q-learning in practice

@ Where to get two Q-functions?
@ just use the current and target networks!

o standard Q-learning: y =7 + Qg (s', arg max, Qg (s, a’))
o double Q-learning: y =7 +vQu (s', arg max, Qy(s',a’))
e just use current network (not target network) to evaluate action

o still use target network to evaluate value

Z Wang (NJU) Deep Q-learning July 3rd, 2022 42 /58

Table of Contents

e Extensions

@ Multi-step returns

Z Wang (NJU) Deep Q-learning July 3rd, 2022 43 /58

n-step bootstrapping: Combine MC and one-step TD

@ Neither MC or one-step TD is always the best, we generalize both
methods so that one can shift from one to the other smoothly as
needed to meet the demands of a particular task

@ One-step TD: In many applications, one wants to be able to update
the action very fast to take into account anything that has changed

@ However, bootstrapping works best if it is over a length of time in
which a significant and recognizable state change has occurred

n=1|n-stepTD | n=00

TD(0) < MC

Z Wang (NJU) Deep Q-learning July 3rd, 2022 44 /58

n-step TD prediction

@ Perform an update based on an intermediate number of rewards,
more than one, but less than all of them until termination

1-step TD co-step TD
and TD(0) 2-stepTD 3-step TD n-step TD and Monte Carlo

7
!

O

O—e—0O———0
o——e+——e—"

OO0
o—D+—0+—D+—0+—D—o—1

O—se ---

O—e -

Deep Q-learning July 3rd, 2022 45 /58

Recall MC and TD(0) updates

@ In MC updates, the target is the complete return
Gy =Riy1 +yRepa + ...+ "Ry

V(St) < V(St) + G([Gt — V(St)]
= V(St) + Oé[Rt+1 + ’YRt+2 + ...+ ’YTiHlRT - V(St)]

e In TD(0) updates, the target is the one-step return
Gitv1 = Riy1 + 7V (Se41)

V(Sy) < V(Sy) + a[Gri11 — V(Sy)]
=V(S) + a[Rip1 + 7V (Siv1) = V(S)]

Z Wang (NJU Deep Q-learning July 3rd, 2022 46 /58
g

n-step TD update rule

@ For n-step TD, set the target as the n-step return
Gritn = Rip1 +YRipa + o + 9" ' Rijn + YV (St4n)

@ All n-step returns can be considered approximations to the complete
return, truncated after n steps and then corrected for the remaining
missing terms by V (Siyy,)

V(Sy) < V(St) + a[Gritn — V(St)]
=V (S) + a[Rit1 +yRiso + o +9" ' Ripy + 9"V (Segn) — V(Sy)]

Z Wang (NJU) Deep Q-learning July 3rd, 2022 47 /58

Deep Q-learning with n-step bootstrapping

: R / /
o Q-learning target: y;; =1 + ymaxg Q¢/(5j7t+1, aj7t+l)
o these are the only values that matter if Q4 is bad!
o these values are important if)y is good

o Construct multi-step targets, N-step return estimator:

t+N—1
_ t'—t N / /
Yjt = § O R e max Q¢’(Sj,t+Na aj,t+N)
et A5 ¢+ N

Z Wang (NJU) Deep Q-learning July 3rd, 2022

Table of Contents

e Extensions

@ Practical tips and examples

Z Wang (NJU) Deep Q-learning July 3rd, 2022 49 /58

Simple practical tips for Q-learning

@ Q-learning takes some care to stabilize

o Test on easy, reliable tasks fist, make sure your implementation is
correct

Ventur
30 Fong 400 Breakout 400000 Video Pinball 250 Shure
15 320 T 320000 X e
o 260 240000 i 120
160000 / J 100.
800001/ o

-15

|

-30

Figure: From T. Schaul, J. Quan, I. Antonoglou, and D. Silver. “Prioritized experience
replay”. arXiv preprint arXiv:1511.05952 (2015), Figure 7

o Large replay buffers help improve stability
o Looks more like fitted Q-iteration

o It tasks time, be patient - might be no better than random for a while

@ Start with high exploration and gradually move to high exploitation

Z Wang (NJU) Deep Q-learning July 3rd, 2022 50/58

Advanced tips for Q-learning

@ Bellman error gradients can be big; clip gradients or use Huber loss

)
\\ /
\

22 /2 if || <6 1\
L(x) = S\ e
S|lz| — 62/2 otherwise i \ /

Double Q-learning helps a lot in practice, simple and no downsides

N-step returns also help a lot, but have some downsides
Schedule exploration (high to low) and learning rates (high to low)
e Adam optimizer can help too

Run multiple random seeds, it's very inconsistent between runs

Z Wang (NJU) Deep Q-learning July 3rd, 2022 51/58

Q-learning with convolutional networks

@ Mnih et al., “Human-level control through deep reinforcement learning,” 2013.
@ Use replay buffer and target network

@ One-step backup, one gradient step

@ Can be improved a lot with double Q-learning (and other tricks)

Boxni

Pong

Space Invaders

Breakout Kung-Fu Master Enduro Ms. PacMan

Z Wang (NJU) Deep Q-learning July 3rd, 20

Q-learning on a real robot

Gu et al., "Robot manupulation with deep reinforcement learning and ...,” 2017.

Continuous actions with NAF (quadratic in actions)

)

°

@ Use replay buffer and target network

@ One-step backup, four gradient steps per simulator step for efficiency
(]

Parallelized across multiple robots

Z Wang (NJU) Deep Q-learning July 3rd, 2022 53 /58

Review

@ Q-learning with deep neural networks
e Replay buffers
o Target networks

@ Generalized fitted Q-iteration Q(s,@) « 7(s,@) +y max Qy (5", @)

Policy
evaluation

@ Deep deterministic policy network

° Deep Q_learning for continuous Run the policy
action space tosgz;fste

e Another network for approximating
optimal policy
e Off-policy

| S

a « argmax Qg (s, a)
a

Policy
improvement

@ Extensions

e Double Q-learning
e Multi-step Q-learning

Z Wang (NJU) Deep Q-learning July 3rd, 2022 54 /58

Learning objectives of this lecture

@ You should be able to...

o Use deep neural networks to approximate Q-functions, be able to
implement deep Q-learning with replay buffers and target networks
o Use deep deterministic policy gradient for continuous actions

e Know double Q-learning for addressing the overestimation problem
o Know deep Q-learning with n-step returns

Z Wang (NJU) Deep Q-learning July 3rd, 2022 55 /58

Deep Q-learning suggested readin

@ Lecture 8 of C5285 at UC Berkeley, Deep Reinforcement Learning,
Decision Making, and Control
@ http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-8.pdf

o DRL Q-learning papers

@ Mnih et al. (2013). Human level control through deep reinforcement learning:
Q-learning with convolutional networks for playing Atari.

@ Van Hasselt, Guez , Silver. (2015). Deep reinforcement learning with double
Q-learning: a very effective trick to improve performance of deep Q-learning.

@ Lillicrap et al. (2016). Continuous control with deep reinforcement learning:
continuous Q-learning with actor network for approximate maximization.

@ Wang, Schaul , Hessel, van Hasselt, Lanctot , de Freitas (2016). Dueling network
architectures for deep reinforcement learning: separates value and advantage
estimation in Q-function.

@ Z. Ren, et al., Self-Paced Prioritized Curriculum Learning With Coverage Penalty
in Deep Reinforcement Learning, TNNLS, 2018.

Z Wang (NJU) Deep Q-learning July 3rd, 2022 56 /58

http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-8.pdf

Volunteer Homework 4

o Study the DDPG algorithm in detail
@ Implement the DDPG algorithm on problems 1 & 2
e Problem 1: the point maze navigation, continuous state-action space
(s,a € R?, s € [-0.5,0.5)%,a € [-0.1,0.1]?)
o Problem 2: the MuJoCo HalfCheetah, make the robot run forward
o Compare DDPG with policy gradient and actor-critic algorithms
@ Write a report introducing the algorithms and your experimentation
o Explanations, steps, evaluation results, visualizations...

@)

Z Wang (NJU) Deep Q-learning July 3rd, 2022 57 /58

THE END

Z Wang (NJU) Deep Q-learning July 3rd, 2022 58 /58

	Q-learning with deep neural networks
	Problem 1: Correlated samples – Solution 1: Replay buffers
	Problem 2: Moving target – Solution 2: Target networks

	Deep deterministic policy gradient (DDPG)
	Continuous action space
	Approximate the optimal policy using another network

	Extensions
	Double Q-learning
	Multi-step returns
	Practical tips and examples

